Hızlı Arama

ÜRÜNLER

ÇİNKO OKSİT

ÇİNKO OKSİT (ZINC OXIDE)


Çinko oksit, ZnO formülüne sahip inorganik bir bileşiktir. ZnO, suda çözünmeyen beyaz bir tozdur. Çinko oksit, kozmetikler, gıda takviyeleri, kauçuklar, plastikler, seramikler, cam, çimento, yağlayıcılar, boyalar, merhemler, yapıştırıcılar, sızdırmazlık maddeleri, pigmentler, gıdalar, piller, ferritler, yangın geciktiriciler dahil olmak üzere çok sayıda malzeme ve üründe katkı maddesi olarak kullanılır ve ilk yardım kasetleri. Çinko oksit, mineral çinko olarak doğal olarak oluşmasına rağmen, çoğu çinko oksit sentetik olarak üretilir.


Çinko oksit

CAS No.: 1314-13-2
EC No: 215-222-5

Çinko Oksit, II-VI yarı iletken grubunun geniş bant aralıklı bir yarı iletkenidir. Oksijen boşlukları veya çinko geçişler nedeniyle yarı iletkenin doğal katkısı n-tipidir. Diğer uygun özellikler arasında iyi şeffaflık, yüksek elektron hareketliliği, geniş bant aralığı ve güçlü oda sıcaklığında ışıldama bulunur. Bu özellikler ZnO'yu ​​yeni ortaya çıkan çeşitli uygulamalar için değerli kılar: sıvı kristal ekranlardaki şeffaf elektrotlar, enerji tasarrufu sağlayan veya ısı koruma pencereleri ve ince film transistörler ve ışık yayan diyotlar gibi elektronikler.

Çinko Oksitin kimyasal özellikleri
Saf Çinko oksit beyaz bir tozdur, ancak doğası gereği çinko oksit, genellikle manganez ve sarıdan kırmızıya renk veren diğer safsızlıkları içeren nadir mineral çinkoit olarak ortaya çıkar.

Kristalin çinko oksit termokromiktir, havada ısıtıldığında beyazdan sarıya değişir ve soğuduğunda beyaza döner. Bu renk değişikliğine, stoikiometrik olmayan Zn1 + xO'yu oluşturmak için yüksek sıcaklıklarda ortama küçük bir oksijen kaybı neden olur, burada 800 ° C'de, x = 0.00007.

Çinko oksit, amfoterik bir oksittir. Suda neredeyse çözünmez, ancak hidroklorik asit gibi çoğu asitte çözünür:
Çinko oksit + 2 HCl → ZnCl2 + H2O

Katı çinko oksit ayrıca alkalilerde çözünerek çözünür çinkoatlar verir:

Çinko oksit + 2 NaOH + H2O → Na2 [Zn (OH) 4]
Çinko oksit, oleat veya stearat gibi karşılık gelen karboksilatları üretmek için yağlardaki yağ asitleriyle yavaş reaksiyona girer. Çinko oksit, güçlü bir sulu çinko klorür çözeltisi ile karıştırıldığında çimento benzeri ürünler oluşturur ve bunlar en iyi şekilde çinko hidroksi klorürler olarak tanımlanır. Bu çimento diş hekimliğinde kullanıldı.


Hopeit
Çinko oksit ayrıca fosforik asit ile işlendiğinde çimento benzeri bir malzeme oluşturur; ilgili malzemeler diş hekimliğinde kullanılmaktadır. Bu reaksiyonla üretilen çinko fosfat çimentosunun önemli bir bileşeni, umutit, Zn3 (PO4) 2 · 4H2O'dur.

Çinko oksit, standart bir oksijen basıncıyla yaklaşık 1975 ° C'de çinko buharına ve oksijene ayrışır. Bir karbotermik reaksiyonda, karbon ile ısıtma, oksidi çok daha düşük bir sıcaklıkta (yaklaşık 950 ° C) çinko buharına dönüştürür.
Çinko oksit + C → Zn (Buhar) + CO


Çinko oksidin fiziksel özellikleri

Çinko oksit, altıgen vurtzit ve kübik çinko blende olmak üzere iki ana biçimde kristalleşir. Vurtzit yapısı, ortam koşullarında en stabildir ve bu nedenle en yaygın olanıdır. Çinko blend formu, kübik kafes yapılı alt tabakalarda Çinko oksit büyütülerek stabilize edilebilir. Her iki durumda da, çinko ve oksit merkezleri, Zn (II) için en karakteristik geometri olan dört yüzlüdür. Çinko oksit nispeten yüksek basınçlarda yaklaşık 10 GPa'da kaya tuzu motifine dönüşür. Çinko oksit içeren kremlerin birçok dikkat çekici tıbbi özelliği, oktahedral yapılara geçişe yakın dört yüzlü koordineli ikili bileşiklerin özelliği olan elastik yumuşaklığıyla açıklanabilir.

Altıgen ve çinko blend polimorflarının ters simetrisi yoktur (bir kristalin herhangi bir noktaya göre yansıması onu kendisine dönüştürmez). Bu ve diğer kafes simetri özellikleri, altıgen ve çinko blend Çinko oksidin piezoelektrikliği ve altıgen Çinko oksidin piroelektrikliği ile sonuçlanır.

Altıgen yapı 6 mm (Hermann-Mauguin gösterimi) veya C6v (Schoenflies gösterimi) nokta grubuna sahiptir ve uzay grubu P63mc veya C6v4'tür. Kafes sabitleri a = 3.25 Å ve c = 5.2 Å; c / a ~ 1.60 oranları, altıgen hücre c / a = 1.633 için ideal değere yakındır. Grup II-VI malzemelerinin çoğunda olduğu gibi, Çinko oksitteki bağlanma büyük ölçüde iyoniktir (Zn2 + –O2−), karşılık gelen yarıçaplar Zn2 + için 0.074 nm ve O2− için 0.140 nm'dir. Bu özellik, çinko blende yapısından ziyade tercihli vurtzit oluşumunu ve ayrıca Çinko oksidin güçlü piezoelektrikliğini açıklar. Kutupsal Zn-O bağları nedeniyle çinko ve oksijen düzlemleri elektriksel olarak yüklenir. Elektriksel nötrlüğü korumak için, bu uçaklar çoğu göreceli malzemede atomik seviyede yeniden inşa edilir, ancak Çinko oksitte değil - yüzeyleri atomik olarak düzdür, stabildir ve yeniden yapılanma göstermez. Bununla birlikte, vurtzoid yapıları kullanan çalışmalar, Çinko oksit düzlemlerindeki yüklerin kökenine ek olarak yüzey düzlüğünün kökenini ve Çinko oksit vurtzit yüzeylerinde yeniden yapılanmanın olmadığını açıkladı.

Çinko oksidin mekanik özellikleri
Çinko oksit, Mohs ölçeğine göre yaklaşık 4,5 sertliğe sahip nispeten yumuşak bir malzemedir. Elastik sabitleri, GaN gibi ilgili III-V yarı iletkenlerinden daha küçüktür. Çinko oksidin yüksek ısı kapasitesi ve ısı iletkenliği, düşük ısıl genleşmesi ve yüksek erime sıcaklığı seramikler için faydalıdır. Çinko oksitteki E2 optik fonon, 10 K'da 133 ps'lik alışılmadık derecede uzun bir ömür sergiler.

Dört yüzlü olarak bağlanmış yarı iletkenler arasında, Çinko oksidin en yüksek piezoelektrik tensöre veya GaN ve AlN ile karşılaştırılabilir en az birine sahip olduğu belirtilmiştir. Bu özellik, onu büyük bir elektromekanik bağlantı gerektiren birçok piezoelektrik uygulama için teknolojik olarak önemli bir malzeme haline getirir. Bu nedenle Çinko oksit, ince film yığın akustik rezonatörleri için en çok incelenen rezonatör malzemelerinden biri olan ince film formunda olmuştur.


Çinko oksidin elektriksel özellikleri
Çinko oksit, oda sıcaklığında ~ 3.3 eV'lik nispeten büyük bir doğrudan bant aralığına sahiptir. Büyük bir bant aralığı ile ilişkili avantajlar arasında daha yüksek arıza voltajları, büyük elektrik alanlarını sürdürme yeteneği, daha düşük elektronik gürültü ve yüksek sıcaklık ve yüksek güçte çalışma bulunur. Çinko oksidin bant boşluğu ayrıca magnezyum oksit veya kadmiyum oksit ile alaşımlanmasıyla ~ 3–4 eV'ye ayarlanabilir.

Çoğu Çinko oksit, kasıtlı doping yapılmasa bile n-tipi karaktere sahiptir. Stokiyometri dışı tipik olarak n tipi karakterin kökenidir, ancak konu tartışmalı olmaya devam etmektedir. Kasıtsız ikame hidrojen safsızlıklarının sorumlu olduğu teorik hesaplamalara dayanan alternatif bir açıklama önerilmiştir. Kontrol edilebilir n-tipi katkılama, Zn'nin Al, Ga, In gibi grup-III elementleri ile ikame edilmesi veya oksijenin, grup-VII elementleri, klor veya iyot ile ikame edilmesi yoluyla kolayca başarılır.

Çinko oksidin güvenilir p-tipi katkılaması hala güçtür. Bu sorun, p-tipi katkı maddelerinin düşük çözünürlüğünden ve bunların bol n-tipi safsızlıklar ile telafi edilmesinden kaynaklanmaktadır. Bu sorun GaN ve ZnSe ile gözlemlenir. "Özünde" n-tipi malzemede p-tipinin ölçümü, numunelerin homojen olmaması nedeniyle karmaşıktır.

P-doping için mevcut sınırlamalar, genellikle n-tipi ve p-tipi malzemelerin birleşimlerini gerektiren Çinko oksidin elektronik ve optoelektronik uygulamalarını sınırlar. Bilinen p-tipi katkı maddeleri arasında grup-I elemanları Li, Na, K; grup-V elemanları N, P ve As; bakır ve gümüş gibi. Bununla birlikte, bunların çoğu derin alıcılar oluşturur ve oda sıcaklığında önemli p-tipi iletim üretmez.

Çinko oksidin elektron hareketliliği sıcaklığa göre büyük ölçüde değişir ve 80 K'da maksimum ~ 2000 cm2 / (V · s) değerine sahiptir. Delik hareketliliğine ilişkin veriler, 5–30 cm2 / (V · s) aralığındaki değerlerle azdır.

Bir varistör görevi gören çinko oksit diskler, çoğu parafudrdaki aktif malzemedir.

Çinko oksit üretimi
Endüstriyel kullanım için Çinko oksit, üç ana işlemle yılda 105 ton seviyelerinde üretilir:

Dolaylı Çinko oksit süreci
Dolaylı veya Fransız işleminde, metalik çinko bir grafit pota içinde eritilir ve 907 ° C'nin üzerindeki sıcaklıklarda (tipik olarak yaklaşık 1000 ° C) buharlaştırılır. Çinko buharı, havadaki oksijenle reaksiyona girerek Çinko oksit verir, bununla birlikte sıcaklığındaki düşüş ve parlak ışıldaması eşlik eder. Çinko oksit parçacıkları, bir soğutma kanalına taşınır ve bir torba yuvasında toplanır. Bu dolaylı yöntem 1844'te LeClaire (Fransa) tarafından popüler hale getirildi ve bu nedenle yaygın olarak Fransız süreci olarak bilinir. Ürünü, normal olarak, ortalama boyutu 0.1 ila birkaç mikrometre olan aglomere edilmiş çinko oksit parçacıklarından oluşur. Ağırlık olarak, dünyadaki çinko oksitin çoğu Fransız usulü ile üretilmektedir.

Doğrudan Çinko oksit süreci
Doğrudan veya Amerikan süreci, çinko cevherleri veya izabe yan ürünleri gibi çeşitli kontamine çinko kompozitleriyle başlar. Çinko öncüleri, antrasit gibi bir karbon kaynağıyla ısıtılarak çinko buharı üretilerek azaltılır (karbotermal indirgeme), bu daha sonra dolaylı işlemde olduğu gibi oksitlenir. Kaynak malzemenin daha düşük saflığı nedeniyle, nihai ürün, dolaylı işlemle karşılaştırıldığında doğrudan işlemde daha düşük kalitededir.

Islak kimyasal işlem
Az miktarda endüstriyel üretim, çinko karbonat veya çinko hidroksitin çökeltildiği sulu çinko tuzları çözeltileriyle başlayan yaş kimyasal süreçleri içerir. Katı çökelti daha sonra 800 ° C civarındaki sıcaklıklarda kalsine edilir.


Laboratuvar sentezi

Bu sentetik Çinko oksit kristallerinin kırmızı ve yeşil renkleri, farklı oksijen konsantrasyonlarından kaynaklanmaktadır.
Bilimsel çalışmalar ve niş uygulamalar için Çinko oksit üretmek için çok sayıda özel yöntem mevcuttur. Bu yöntemler, elde edilen Çinko oksit formu (yığın, ince film, nanotel), sıcaklık ("düşük", oda sıcaklığına yakın veya "yüksek", yani T ~ 1000 ° C), işlem türü (buhar çözeltiden birikme veya büyüme) ve diğer parametreler.

Büyük tek kristaller (birçok santimetre küp), gaz taşınması (buhar fazı biriktirme), hidrotermal sentez veya eriyik büyümesi ile büyütülebilir. Bununla birlikte, Çinko oksidin yüksek buhar basıncı nedeniyle, eriyikten büyümesi sorunludur. Gaz nakliyesi ile büyümenin kontrol edilmesi zordur ve hidrotermal yöntemi bir tercih olarak bırakır. İnce filmler, kimyasal buhar biriktirme, metalorganik buhar fazı epitaksi, elektro-çökeltme, darbeli lazer biriktirme, püskürtme, sol-jel sentezi, atomik tabaka biriktirme, püskürtme pirolizi vb. İle üretilebilir.

Sıradan beyaz toz halindeki çinko oksit, laboratuarda bir sodyum bikarbonat çözeltisinin bir çinko anot ile elektroliz edilmesiyle üretilebilir. Çinko hidroksit ve hidrojen gazı üretilir. Çinko hidroksit ısıtıldığında çinko okside ayrışır.

Zn + 2 H2O → Zn (OH) 2 + H2
Zn (OH) 2 → Çinko oksit + H2O

Çinko oksit nanoyapıları
Çinko oksidin nanoyapıları, nanoteller, nanorodlar, tetrapodlar, nanobeltler, nanoflowers, nanopartiküller vb. Dahil olmak üzere çeşitli morfolojilere sentezlenebilir. yöntem. Sentez tipik olarak yaklaşık 90 ° C'lik sıcaklıklarda, eşmolar sulu çinko nitrat ve heksamin çözeltisi içinde gerçekleştirilir; ikincisi, temel ortamı sağlar. Polietilen glikol veya polietilenimin gibi belirli katkı maddeleri, Çinko oksit nanotellerinin en-boy oranını iyileştirebilir. Çinko oksit nanotellerinin katkılanması, büyüme çözeltisine başka metal nitratlar eklenerek sağlanmıştır. Ortaya çıkan nanoyapıların morfolojisi, öncül bileşimi (çinko konsantrasyonu ve pH gibi) veya ısıl işlem (sıcaklık ve ısıtma hızı gibi) ile ilgili parametreler değiştirilerek ayarlanabilir.

Önceden tohumlanmış silikon, cam ve galyum nitrür substratlar üzerinde hizalanmış Çinko oksit nanotelleri, bazik ortamlarda çinko nitrat ve çinko asetat gibi sulu çinko tuzları kullanılarak büyütülmüştür. Alt tabakaların Çinko oksit ile tohumlanması, sentez sırasında Çinko oksit kristalinin homojen çekirdeklenmesi için alanlar oluşturur. Yaygın ön tohumlama yöntemleri arasında çinko asetat kristalitlerinin yerinde termal ayrışması, Çinko oksit nanopartiküllerinin döndürülerek kaplanması ve Çinko oksit ince filmlerin çökeltilmesi için fiziksel buhar biriktirme yöntemlerinin kullanılması yer alır. Ön tohumlama, büyümeden önce çekirdeklenme alanlarını belirlemek için elektron ışını litografisi ve nanosfer litografisi gibi yukarıdan aşağı modelleme yöntemleriyle birlikte gerçekleştirilebilir. Hizalanmış Çinko oksit nanotelleri, boyaya duyarlı güneş pillerinde ve alan emisyon cihazlarında kullanılabilir.

Çinko oksit tarihi
Çinko bileşikleri muhtemelen ilk insanlar tarafından işlenmiş ve işlenmemiş formlarda boya veya tıbbi merhem olarak kullanılmıştır, ancak bileşimleri belirsizdir. Muhtemelen çinko oksit olan pushpanjan'ın gözler ve açık yaralar için bir merhem olarak kullanılmasından, MÖ 500 veya daha öncesine ait olduğu düşünülen Charaka Samhita Hint tıbbi metninde bahsedilmektedir. Çinko oksit merhem ayrıca Yunan doktor Dioscorides (MS 1. yüzyıl) tarafından da bahsedilmektedir. Galen, Avicenna'nın The Canon of Medicine adlı kitabında yaptığı gibi ülserleşen kanserleri çinko oksitle tedavi etmeyi önerdi. Çinko oksit artık cilt kanserini tedavi etmek için kullanılmamaktadır, ancak yine de bebek pudrası ve bebek bezi döküntülerine karşı kremler, kalamin kremi, kepek önleyici şampuanlar ve antiseptik merhemler gibi ürünlerde bir bileşen olarak kullanılmaktadır.

Romalılar, bakırın çinko oksit ile reaksiyona sokulduğu bir sementasyon işlemiyle MÖ 200 gibi erken bir tarihte önemli miktarlarda pirinç (bir çinko ve bakır alaşımı) ürettiler. Çinko oksidin bir şaft fırınında çinko cevherinin ısıtılmasıyla üretildiği düşünülmektedir. Bu, daha sonra bacadan çıkan ve oksit olarak yoğunlaşan buhar olarak metalik çinkoyu serbest bıraktı. Bu süreç, MS 1. yüzyılda Dioscorides tarafından tanımlanmıştır. Hindistan'da Zawar'daki çinko madenlerinden MÖ 1. bin yılın ikinci yarısından itibaren çinko oksit de elde edildi.

12. yüzyıldan 16. yüzyıla kadar çinko ve çinko oksit, doğrudan sentez sürecinin ilkel bir formu kullanılarak Hindistan'da tanındı ve üretildi. Hindistan'dan çinko üretimi 17. yüzyılda Çin'e taşındı. 1743'te, ilk Avrupa çinko izabe tesisi İngiltere'nin Bristol kentinde kuruldu. 1782 civarında Louis-Bernard Guyton de Morveau, kurşun beyazının çinko oksit ile değiştirilmesini önerdi.

Çinko oksidin (çinko beyaz) ana kullanımı boyalarda ve merhemlere katkı maddesi olarak kullanılmıştır. Çinko beyazı, 1834 yılına kadar yağlı boya resimlerde pigment olarak kabul edildi, ancak yağla iyi karışmadı. Bu sorun, Çinko oksit sentezinin optimize edilmesiyle çözüldü. 1845'te Paris'teki LeClaire, yağlı boyayı büyük ölçekte üretiyordu ve 1850'de tüm Avrupa'da çinko beyazı üretiliyordu. Çinko beyaz boyanın başarısı, geleneksel beyaz kurşuna göre avantajlarından kaynaklanıyordu: Çinko beyazı esasen güneş ışığında kalıcıdır, kükürt içeren hava ile kararmaz, toksik değildir ve daha ekonomiktir. Çinko beyazı çok "temiz" olduğundan, diğer renklerle ton yapmak için değerlidir, ancak diğer renklerle karıştırılmadığında oldukça kırılgan bir kuru film oluşturur. Örneğin, 1890'ların sonlarında ve 1900'lerin başlarında, bazı sanatçılar yağlı boya tabloları için çinko beyazını zemin olarak kullandılar. Tüm bu resimler yıllar içinde çatlaklar geliştirdi.

Son zamanlarda, kauçuk endüstrisinde korozyona direnmek için çoğu çinko oksit kullanıldı. 1970'lerde Çinko oksidin en büyük ikinci uygulaması fotokopi idi. "Fransız işlemi" ile üretilen yüksek kaliteli Çinko oksit, fotokopi kağıdına dolgu maddesi olarak eklenmiştir. Bu uygulama kısa süre sonra titanyum tarafından değiştirildi.


Çinko oksit uygulamaları
Çinko oksit tozunun uygulamaları çoktur ve başlıca uygulamaları aşağıda özetlenmiştir. Çoğu uygulama, diğer çinko bileşiklerinin öncüsü olarak oksidin reaktivitesini kullanır. Malzeme bilimi uygulamaları için çinko oksit, yüksek kırılma indisine, yüksek termal iletkenliğe, bağlanma, antibakteriyel ve UV koruma özelliklerine sahiptir. Sonuç olarak plastik, seramik, cam, çimento, kauçuk, yağlayıcılar, boyalar, merhemler, yapıştırıcı, sızdırmazlık malzemeleri, beton imalatı, pigmentler, gıdalar, piller, ferritler, alev geciktiriciler vb. Malzeme ve ürünlere eklenir.

Çinko oksit kauçuk üretimi
Çinko oksit kullanımının% 50 ila% 60'ı kauçuk endüstrisindedir. Kauçuğun vulkanizasyonunda stearik asit ile birlikte çinko oksit kullanılır Çinko oksit katkı maddesi ayrıca kauçuğu mantarlardan (tıbbi uygulamalara bakınız) ve UV ışığından korur.

Seramik endüstrisi
Seramik endüstrisi, özellikle seramik sır ve frit bileşimlerinde önemli miktarda çinko oksit tüketir. Çinko oksidin nispeten yüksek ısı kapasitesi, termal iletkenliği ve yüksek sıcaklık stabilitesi, nispeten düşük bir genleşme katsayısı ile birlikte seramik üretiminde arzu edilen özelliklerdir. Çinko oksit, sırların, emayelerin ve seramik formülasyonlarının erime noktasını ve optik özelliklerini etkiler. Düşük genleşme olarak çinko oksit, ikincil akı, sıcaklığın bir fonksiyonu olarak viskozitedeki değişimi azaltarak sırların elastikiyetini geliştirir ve çizilmeyi ve titremeyi önlemeye yardımcı olur. BaO ve PbO yerine Çinko oksit konarak, ısı kapasitesi azaltılır ve ısıl iletkenlik arttırılır. Az miktarda çinko, parlak ve parlak yüzeylerin gelişimini iyileştirir. Ancak orta ve yüksek miktarlarda mat ve kristal yüzeyler oluşturur. Renk konusunda çinkonun karmaşık bir etkisi vardır.

İlaç
Yaklaşık% 0.5 demir (III) oksit (Fe2O3) ile karışım halinde çinko oksit, kalamin olarak adlandırılır ve kalamin losyonunda kullanılır. İki mineral, çinkoit ve hemimorfit, tarihsel olarak kalamin olarak adlandırılmıştır. Öjenol ile karıştırıldığında, diş hekimliğinde restoratif ve prostodontik olarak uygulamaları olan bir ligand, çinko oksit öjenol oluşur.

Çinko oksidin temel özelliklerini yansıtan ince oksit parçacıkları koku giderici ve antibakteriyel özelliklere sahiptir ve bu nedenle pamuklu kumaş, kauçuk, ağız bakım ürünleri ve gıda ambalajı gibi malzemelere eklenir. Dökme malzemeye kıyasla ince parçacıkların geliştirilmiş antibakteriyel etkisi Çinko okside özel değildir ve gümüş gibi diğer malzemeler için de gözlemlenmiştir. Bu özellik, ince parçacıkların artan yüzey alanından kaynaklanmaktadır.

Çinko oksit, ağız çalkalama ürünlerinde ve diş macunlarında, ağızdaki uçucu gazları ve uçucu kükürt bileşiklerini (VSC) azaltarak, plak ve tartar oluşumunu önlemek ve ağız kokusunu kontrol etmek için önerilen bir antibakteriyel ajan olarak kullanılmaktadır. Çinko oksit veya çinko tuzlarının yanı sıra, bu ürünler ayrıca genellikle setilpiridinyum klorür, ksilitol, hinokitiol, uçucu yağlar ve bitki özleri gibi diğer aktif bileşenleri içerir.

Çinko oksit, atopik dermatit, kontakt dermatit, egzamaya bağlı kaşıntı, çocuk bezi döküntüleri ve akne gibi çeşitli cilt rahatsızlıklarının tedavisinde yaygın olarak kullanılmaktadır. Güneş kremlerine de çinko oksit eklenir.

Bebek bezi döküntüleri, kalamin kremi, kepek önleyici şampuanlar ve antiseptik merhemleri tedavi etmek için bebek pudrası ve bariyer kremleri gibi ürünlerde kullanılır. Aynı zamanda sporcular tarafından egzersiz sırasında yumuşak doku hasarını önlemek için bandaj olarak kullanılan bantta ("çinko oksit bant" adı verilir) bir bileşendir.


Çinko oksit merhemlerde, kremlerde ve losyonlarda güneş yanığına ve ultraviyole ışığın neden olduğu diğer cilt hasarlarına karşı koruma sağlamak için kullanılabilir (bkz. ABD Gıda ve İlaç Dairesi (FDA) tarafından güneş koruyucu olarak kullanım için onaylanmış ve tamamen fotostabil olan en geniş spektrumlu UVA ve UVB emicidir. Güneş koruyucusunda bir bileşen olarak kullanıldığında, çinko oksit hem UVA (320–400 nm) hem de UVB (280–320 nm) ultraviyole ışık ışınlarını engeller. Çinko oksit ve diğer en yaygın fiziksel güneş koruyucu titanyum dioksitin tahriş edici olmadığı, alerjen olmadığı ve komedojenik olmadığı kabul edilir. Bununla birlikte, çinko oksitten elde edilen çinko cilt tarafından hafifçe emilir.

Pek çok güneş kremi, çinko oksit nanopartiküllerini (titanyum dioksit nanopartikülleri ile birlikte) kullanır çünkü bu tür küçük partiküller ışığı dağıtmaz ve bu nedenle beyaz görünmez. Nanopartiküller, cilde normal boyuttaki çinko oksit partiküllerinden daha fazla absorbe edilmez ve yalnızca cildin en dış katmanına emilir, ancak vücut tarafından emilmez.

Çinko oksit nanopartiküller, siprofloksasinin antibakteriyel aktivitesini artırabilir. Ortalama boyutu 20 nm ile 45 nm arasında olan nano Çinko oksidin, in vitro olarak Staphylococcus aureus ve Escherichia coli'ye karşı siprofloksasinin antibakteriyel aktivitesini artırabileceği gösterilmiştir. Bu nanomateryalin artırıcı etkisi, tüm test suşlarına karşı konsantrasyona bağlıdır. Bu etki iki nedenden dolayı olabilir. İlk olarak, çinko oksit nanopartiküller, bakterilerde direnç sağlamak için geliştirilen ve hidrofilik florokinolonların hücreden dışarı akmasına aracılık eden pompalama aktivitesine sahip olan NorA proteinine müdahale edebilir. İkincisi, çinko oksit nanopartikülleri, kinolon antibiyotiklerinin hücreye nüfuz etmesinden sorumlu olan Omf proteinine müdahale edebilir.

Sigara filtreleri
Çinko oksit, sigara filtrelerinin bir bileşenidir. Çinko oksit ve demir oksit ile emprenye edilmiş odun kömüründen oluşan bir filtre, tütün dumanından önemli miktarda hidrojen siyanürü (HCN) ve hidrojen sülfidi (H2S) tadı etkilemeden uzaklaştırır.

Gıda katkı maddesi
Çinko oksit, kahvaltılık gevrekler de dahil olmak üzere birçok gıda ürününe gerekli bir besin olan çinko kaynağı olarak eklenir. (Çinko sülfat da aynı amaç için kullanılır.) Bazı önceden paketlenmiş gıdalar, besin olarak tasarlanmasa bile eser miktarda Çinko oksit içerir.

Çinko oksit, 2008 Şili domuz krizinde domuz ihracatındaki dioksin kirliliğiyle bağlantılıydı. Kontaminasyonun domuz yeminde kullanılan dioksinle kontamine çinko oksitten kaynaklandığı bulundu.

Pigment
Çinko beyazı, boyalarda pigment olarak kullanılır ve litokopona göre daha opak, ancak titanyum dioksitten daha az opaktır. Kağıt kaplamalarda da kullanılır. Çin beyazı, sanatçıların pigmentlerinde kullanılan özel bir çinko beyazıdır. Yağlı boyada pigment olarak çinko beyazının (çinko oksit) kullanımı 18. yüzyılın ortalarında başlamıştır. Zehirli kurşun beyazının yerini kısmen aldı ve Böcklin, Van Gogh, Manet, Munch ve diğerleri gibi ressamlar tarafından kullanıldı. Aynı zamanda mineral makyajın ana bileşenidir (CI 77947).

UV emici
Mikronize ve nano ölçekli çinko oksit ve titanyum dioksit, UVA ve UVB ultraviyole radyasyona karşı güçlü koruma sağlar ve güneş losyonunda ve ayrıca uzayda kullanım ve kaynak sırasında koruma için UV bloke edici güneş gözlüklerinde, Jet'teki bilim adamlarının araştırmasını takiben kullanılır. Tahrik Laboratuvarı (JPL).

Kaplamalar
Çinko oksit tozu içeren boyalar uzun zamandır metaller için antikorozif kaplama olarak kullanılmaktadır. Özellikle galvanizli demirlerde etkilidirler. Demirin korunması zordur çünkü organik kaplamalarla reaktivitesi kırılganlığa ve yapışma eksikliğine neden olur. Çinko oksit boyalar bu tür yüzeylere esnekliğini ve yapışmasını uzun yıllar korur.

Alüminyum, galyum veya indiyum ile yüksek oranda n tipi katkılı çinko oksit şeffaf ve iletkendir (şeffaflık ~% 90, en düşük direnç ~ 10−4 Ω · cm). Çinko oksit: Al kaplamalar, enerji tasarrufu veya ısı koruma pencereleri için kullanılır. Kaplama, spektrumun görünür kısmının içeri girmesine izin verir, ancak kızılötesi (IR) radyasyonu odaya geri yansıtır (enerji tasarrufu) veya pencerenin hangi tarafında olduğuna bağlı olarak IR radyasyonunun odaya girmesine izin vermez (ısı koruması). kaplama.

Polietilen naftalat (PEN) gibi plastikler çinko oksit kaplama uygulanarak korunabilir. Kaplama, oksijenin PEN ile difüzyonunu azaltır. Dış mekan uygulamalarında polikarbonat üzerine çinko oksit tabakaları da kullanılabilir. Kaplama, polikarbonatı güneş ışınlarından korur ve oksidasyon oranını ve ışıkla sararmasını azaltır.

Nükleer reaktörlerde korozyon önleme
64Zn'de tükenen çinko oksit (atom kütlesi 64 olan çinko izotopu), nükleer basınçlı su reaktörlerinde korozyonun önlenmesinde kullanılır. Tükenme gereklidir, çünkü 64Zn, reaktör nötronları tarafından ışınlama altında radyoaktif 65Zn'ye dönüştürülür.

Metan dönüştürme
Çinko oksit (ZnO), katalizörü zehirleyebilecek bir metan dönüştürücüsünden önce herhangi bir kükürt bileşiğinin hidrojenasyonunu takiben hidrojen sülfidi (H2S) doğal gazdan çıkarmak için bir ön işlem adımı olarak kullanılır. Yaklaşık 230–430 ° C (446–806 ° F) arasındaki sıcaklıklarda, H2S aşağıdaki reaksiyonla suya dönüştürülür:

H2S + Çinko oksit → H2O + ZnS
Çinko oksit tüketildiğinde çinko sülfit (ZnS) taze çinko oksit ile değiştirilir.


Çinko oksidin potansiyel uygulamaları
Elektronik

Çinko oksit geniş bir doğrudan bant aralığına sahiptir (oda sıcaklığında 3.37 eV veya 375 nm). Bu nedenle, en yaygın potansiyel uygulamaları lazer diyotlar ve ışık yayan diyotlardır (LED'ler). Çinko oksidin bazı optoelektronik uygulamaları, benzer bir bant boşluğuna (oda sıcaklığında ~ 3.4 eV) sahip olan GaN ile örtüşmektedir. GaN ile karşılaştırıldığında, Çinko oksit daha büyük bir eksiton bağlama enerjisine (~ 60 meV, oda sıcaklığındaki termal enerjinin 2,4 katı) sahiptir, bu da Çinko oksitten parlak oda sıcaklığında emisyonla sonuçlanır. Çinko oksit, LED uygulamaları için GaN ile birleştirilebilir. Örneğin şeffaf iletken oksit katmanı ve Çinko oksit nano yapıları daha iyi ışık çıkışı sağlar. Çinko oksidin elektronik uygulamalar için elverişli diğer özellikleri arasında, yüksek enerjili radyasyona karşı stabilitesi ve ıslak kimyasal aşındırma ile modelleme olasılığı bulunmaktadır. Radyasyon direnci, Çinko oksidi uzay uygulamaları için uygun bir aday yapar. Çinko oksit, elektronik olarak pompalanan bir UV lazer kaynağı üretmek için rastgele lazerler alanında en umut verici adaydır.

Çinko oksit nanorodlarının sivri uçları, elektrik alanında güçlü bir artışa neden olur. Bu nedenle, alan yayıcıları olarak kullanılabilirler.

Alüminyum katkılı Çinko oksit tabakaları şeffaf elektrot olarak kullanılır. Zn ve Al bileşenleri, genel olarak kullanılan indiyum kalay oksit (ITO) ile karşılaştırıldığında çok daha ucuz ve daha az toksiktir. Ticari olarak temin edilebilen bir uygulama, güneş pilleri veya sıvı kristal ekranlar için ön temas olarak Çinko oksidin kullanılmasıdır.

Şeffaf ince film transistörler (TTFT) Çinko oksit ile üretilebilir. Alan etkili transistörler olarak, bir p – n bağlantısına bile ihtiyaç duymayabilirler, böylece Çinko oksidin p-tipi katkılama probleminden kaçınılır. Bazı alan etkili transistörler, iletken kanallar olarak Çinko oksit nanorodlarını bile kullanır.

Çinko oksit nanorod sensörü
Çinko oksit nanorod sensörleri, gaz moleküllerinin adsorpsiyonundan dolayı çinko oksit nanotellerden geçen elektrik akımındaki değişiklikleri algılayan cihazlardır. Hidrojen gazına seçicilik, nanorod yüzeyine Pd kümelerinin püskürtülmesiyle elde edildi. Pd ilavesi, hidrojen moleküllerinin katalitik olarak atomik hidrojene ayrışmasında etkili görünüyor ve sensör cihazının hassasiyetini artırıyor. Sensör, oda sıcaklığında milyonda 10 parçaya kadar düşen hidrojen konsantrasyonlarını algılar, oysa oksijene yanıt yoktur. Çinko oksit, mikroelektrotlara uygulanan ölçüm elektrik alanı tarafından araştırılan tüm bölge boyunca antikorların dağılımını sağlayan immobilizasyon katmanları olarak kullanılmıştır.

Spintronics
Çinko oksit, spintronik uygulamalar için de düşünülmüştür:% 1-10 manyetik iyon (Mn, Fe, Co, V, vb.) İle katılırsa, Çinko oksit oda sıcaklığında bile ferromanyetik hale gelebilir. Çinko oksitte bu tür oda sıcaklığında ferromanyetizma: Mn gözlemlenmiştir, ancak bunun matrisin kendisinden mi yoksa ikincil oksit fazlarından mı kaynaklandığı henüz net değildir.

Piezoelektrik
Çinko oksitle kaplanmış tekstil elyaflarındaki piezoelektrikliğin, rüzgar veya vücut hareketlerinden kaynaklanan günlük mekanik stresle "kendi kendine çalışan nanosistemleri" üretebildiği gösterilmiştir.

2008'de Georgia Teknoloji Enstitüsü'ndeki Nanoyapı Karakterizasyonu Merkezi, çinko oksit nanotellerini gererek ve serbest bırakarak alternatif akım sağlayan bir elektrik üretim cihazı (esnek şarj pompası jeneratörü olarak adlandırılır) ürettiğini bildirdi. Bu mini jeneratör, uygulanan mekanik enerjinin yüzde yedisine yakınını elektriğe dönüştürerek 45 milivolta kadar salınımlı bir voltaj oluşturur. Araştırmacılar 0,2–0,3 mm uzunluğunda ve üç ila beş mikrometre çaplı teller kullandılar, ancak cihaz daha küçük boyuta küçültülebilirdi.


Li-ion pilin anotu olarak çinko oksit
İnce film şeklinde Çinko oksit, minyatürleştirilmiş yüksek frekanslı ince film rezonatörlerinde, sensörlerde ve filtrelerde gösterilmiştir.

Li-ion pil
Çinko oksit, lityum iyon pil için ümit verici bir anot malzemesidir çünkü ucuzdur, biyouyumludur ve çevre dostudur. Çinko oksit, CoO (715 mAh g − 1), NiO (718 mAh g − 1) ve CuO (674 mAh g − 1) gibi diğer birçok geçiş metal oksitinden daha yüksek teorik kapasiteye (978 mAh g − 1) sahiptir.

Çinko oksit güvenliği
Bir gıda katkı maddesi olarak çinko oksit, ABD FDA'nın genel olarak güvenli veya GRAS maddeler listesinde yer almaktadır.

Çinko oksidin kendisi toksik değildir; bununla birlikte, çinko veya çinko alaşımları yüksek sıcaklıkta eritildiğinde ve oksitlendiğinde ortaya çıkan çinko oksit dumanlarının solunması tehlikelidir. Bu sorun pirinç içeren alaşımların erimesi sırasında ortaya çıkar çünkü pirincin erime noktası çinkonun kaynama noktasına yakın olur. Galvanizli (çinko kaplı) çeliğin kaynağında da meydana gelen havadaki çinko okside maruz kalma, metal denilen bir hastalığa neden olabilir. duman ateşi. Bu nedenle, tipik olarak galvanizli çelik kaynaklanmaz veya önce çinko çıkarılır.


Çinko oksit, bir dizi imalat işleminde kullanılan inorganik bir bileşiktir. Kauçuklar, plastikler, seramikler, cam, çimento, yağlayıcılar, boyalar, merhemler, yapıştırıcılar, sızdırmazlık maddeleri, pigmentler, gıdalar, piller, ferritler, alev geciktiriciler ve ilk yardım bantlarında bulunabilir. Doğal olarak mineral çinkoit olarak bulunur, ancak çoğu çinko oksit sentetik olarak üretilir. Bebek bezi döküntülerini tedavi etmek için bebek pudrası ve bariyer kremleri, kalamin kremi, kepek önleyici şampuanlar ve antiseptik merhemler gibi çeşitli diğer cilt rahatsızlıklarının tedavisinde de yaygın olarak kullanılmaktadır.

Çinko oksit hafif büzücüdür ve topikal olarak egzamada ve hafif sıyrıklarda, yaralarda ve hemoroitlerde yatıştırıcı ve koruyucu bir uygulama olarak kullanılır. Ayrıca egzama tedavisinde kömür katranı veya ichthammol ile birlikte kullanılır.

Çinko oksit, bir dizi dental siman üretiminde temel olarak kullanılır. Fosforik asitle karıştırıldığında, büyük ölçüde çinko fosfattan oluşan sert bir malzeme oluşturur; karanfil yağı veya öjenol ile karıştırılarak geçici diş dolgusu olarak kullanılır.

Çinko oksit olarak farmakolojik çinko seviyelerinin sütten kesme sonrası dönemde domuz performansını sürekli olarak arttırdığı bulunmuştur. Bazı durumlarda, yüksek seviyelerde çinko oksidin sütten kesilme sonrası ishal vakasını ve şiddetini azalttığı bildirilmiştir. Çinko oksit ve antibiyotiklere tepkiler, doğası gereği, yüksek bakır ve antibiyotiklere verilen tepkiler gibi, katkı maddesi gibi görünmektedir; ancak aynı diyete yüksek bakır ve yüksek çinko dahil etmenin bir avantajı yoktur.

Çinko oksit, çinko bileşiklerinin en büyük kullanımından sorumludur ve esas olarak kauçuk endüstrisi tarafından bir vulkanizasyon aktivatörü ve hızlandırıcı olarak ve oksidasyonla oluşan sülfür ve organik asitleri nötralize ederek kauçuk yaşlanmasını yavaşlatmak için kullanılır. Aynı zamanda kauçukta bir takviye maddesi, bir ısı iletkeni, bir beyaz pigment ve bir UV ışığı emici olarak işlev görür. Boyalarda çinko oksit, küf, asit tamponu ve pigment görevi görür. Hayvan yemlerinde çinko takviyesi olarak ve çinko eksikliği olan topraklarda gübre katkı maddesi olarak kullanılır. Çinko oksit, kozmetikte ve ilaçlarda öncelikle fungisit özelliği nedeniyle ve diş hekimliğinde diş simanlarında kullanılmaktadır. Seramikte, cam üretiminde, organik sentezde katalizör olarak ve kuşe fotokopi kağıdında da kullanılır.

Kostik soda süzülmesine maruz kalmayan cevher konsantrelerinden metalik çinko üretmek için iki işlem kullanılır. Bir işlemde, çinko sülfit içeren cevher konsantresi, kok veya kömür ile birleştirilen ve metalik çinko üretmek için yaklaşık 1.100 ° C'ye kadar damlatılan çinko oksit üretmek için hava varlığında kavrulur. Diğer işlemde, kavrulmuş çinko oksit sülfürik asit ile süzülür ve çözelti,>% 99.9 saflıkta çinko üretmek için elektrolize edilir.

Çinko oksit ayrıca, daha sonra yıkanan, filtre edilen ve son olarak kalsine edilen bazik karbonatın çökeltilmesiyle saflaştırılmış çinko sülfat veya klorür çözeltilerinden endüstriyel olarak üretilir. Bu yöntem, yüksek özgül yüzey alanına sahip bir çinko oksit derecesi üretir. Bu tip ürünler ayrıca kimyasal yolla saflaştırılan ve ardından kalsine edilen atık hidroksitlerden elde edilir.

Çinko oksit kalıntıları, hasattan sonra büyüyen mahsullere veya ham tarımsal ürünlere uygulanan pestisit formülasyonlarında inert (veya bazen aktif) bileşenler olarak iyi tarım uygulamasına uygun olarak bir kaplama maddesi olarak kullanıldığında tolerans gerekliliğinden muaftır.

Çinko oksit, yoğun görünür ışığa maruz kalan farelerde görsel hücre kaybını etkili bir şekilde azaltır ve yaşa bağlı makula dejenerasyonunun ileri aşamalarında hastalığın ilerleme hızını yavaşlattığı bilinmektedir. Amacımız, ışık kaynaklı oksidatif retina hasarının bir hayvan modelinde yeni ve iyi bilinen antioksidanlarla kombinasyon halinde çinko oksidin etkinliğini belirlemekti. Bir grup erkek Sprague-Dawley sıçanı, biberiye tozunun bir deterjan özütü ile veya özü olmaksızın çinko oksit ile ön işlemden geçirildi ve ardından 4-24 saat boyunca yoğun görünür ışığa maruz bırakıldı. Yaşa Bağlı Göz Hastalığı Çalışması grubunun ilk klinik denemesinde önerildiği gibi, başka bir hayvan grubuna çoklu doymamış yağ asitleri (ROPUFA) karışımı ile seyreltilmiş biberiye yağı ile birlikte çinko oksit ve üçüncü gruba çinko oksit içeren bir antioksidan mineral karışımı verildi. AREDS1). Görsel hücre sağkalımı, rodopsin ve fotoreseptör hücre DNA seviyeleri ölçülerek yoğun ışık tedavisinden 2 hafta sonra belirlendi ve retinal histoloji ve DNA'nın agaroz jel elektroforezi ile doğrulandı. Çinko ve antioksidanların oksidatif stres belirteçleri, glial fibriller asidik protein (GFAP), hem-oksijenaz-1 (HO-1) ve karboksietilpirrol (CEP) üzerindeki etkilerini belirlemek için Western analizi kullanıldı. Çubuk ve koni opsin ve arrestin seviyeleri, fotoreseptör hücre fonksiyonunun belirteçleri olarak kullanıldı. 1.3 mg / kg çinko oksit ve 17 mg / kg biberiye özütü ile veya bu dozların yarısı ile muamele edilmiş ve orta şiddette yeşil ışığa maruz bırakılmış ve maruz kalmamış halde ölçülen rodopsin ve retina DNA'sının% 75-85'ini koruduk. sıçanlar. Bu seviyeler, tek başına çinko oksit veya biberiye tedavisi için bulunandan önemli ölçüde daha yüksekti. Biberiye yağı, çinko oksit ile birleştirildiğinde de etkiliydi, ancak ROPUFA tek başına deterjan aracından daha etkili değildi. Uzun süreli yoğun yeşil ışık, retinal GFAP ve HO-1 seviyelerinde artışlara ve koni hücreli opsin ile çubuk ve koni arrestinlerinde azalmaya yol açtı. Biberiye artı çinko tedavisi, geliştirilmiş fotoreseptör hücre mo ile gösterildiği gibi, oksidatif stres protein belirteçlerinin ekspresyonunu azalttı ve görsel hücre sağkalımını artırdı.

Kullanımlar
Bu ilaç çocuk bezi döküntülerini ve diğer küçük cilt tahrişlerini (örn. Yanıklar, kesikler, sıyrıklar) tedavi etmek ve önlemek için kullanılır. Cildi tahriş edici maddelerden / nemden korumak için cilt üzerinde bir bariyer oluşturarak çalışır.

Çinko Oksit Merhem nasıl kullanılır
Bu ilacı sadece cilt üzerinde kullanın. Ürün paketindeki tüm talimatları izleyin veya doktorunuzun belirttiği şekilde kullanın. Herhangi bir sorunuz varsa, doktorunuza veya eczacınıza sorunuz.

Bu ilacı göze almaktan kaçının. İlacı göze alırsanız bol su ile yıkayın.

Spreyi kullanıyorsanız, her kullanımdan önce kabı iyice çalkalayın.

Çinko oksit, ağrı ve kaşıntıyı gidermek için birçok enzimin, güneş perdesinin ve merhemlerin temel bir bileşenidir. Mikro kristalleri, geniş bant aralığı nedeniyle spektrumların UVA ve UVB bölgesinde çok verimli ışık emicilerdir. Çinko oksidin biyolojik işlevler üzerindeki etkisi, morfolojisine, parçacık boyutuna, maruz kalma süresine, konsantrasyonuna, pH'ına ve biyouyumluluğuna bağlıdır. Bacillus subtilis, Bacillus megaterium, Staphylococcus aureus, Sarcina lutea, Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumonia, Pseudomonas vulgaris, Candida albicans ve Aspergillus niger gibi mikroorganizmalara karşı daha etkilidirler. Etki mekanizması, bakteri hücre duvarına difüzyon yoluyla nüfuz eden ışıkla çinko oksit nanopartiküllerinin aktivasyonuna atfedilmiştir. Bakteriyel hücrelerin SEM ve TEM görüntülerinden, çinko oksit nanopartiküllerinin hücre zarını parçaladığı ve hücre apoptozuna neden olan biyomoleküllerle etkileşime girdiği sitoplazmada birikerek hücre ölümüne yol açtığı doğrulandı.


Çinko oksit nanopartikül, yukarıdaki tüm gereklilikleri karşılayan bu tür bir inorganik metal oksittir ve bu nedenle, ilaç, ambalajda koruyucu ve antimikrobiyal bir ajan olarak güvenle kullanılabilir. Kolaylıkla gıda maddesine yayılır, mikropları öldürür ve insanın hastalanmasını engeller. Avrupa Birliği'nin 1935/2004 / EC ve 450/2009 / EC düzenlemelerine uygun olarak, aktif ambalaj, gıdanın bileşimini veya etrafındaki atmosferi değiştirebilen gıdayla temas eden aktif malzeme olarak tanımlanır. Bu nedenle, genellikle koruyucu olarak kullanılır ve gıda malzemesinin mikroplardan zarar görmesini önlemek için polimerik ambalaj malzemesine dahil edilir. Çinko oksit nanopartiküller, in vitro olarak Salmonella typhi ve S. aureus'a karşı antibakteriyel bir madde olarak kullanılmıştır. Şimdiye kadar incelenen tüm metal oksit nanopartiküller arasında çinko oksit nanopartiküller, mikroorganizmalara karşı en yüksek toksisiteyi sergiledi. Ayrıca, SEM ve TEM görüntülerinden çinko oksit nanopartiküllerinin önce bakteri hücre duvarına zarar verdiği, daha sonra nüfuz ettiği ve sonunda hücre zarında biriktiği de gösterilmiştir. Mikropların metabolik işlevlerine müdahale ederek ölümlerine neden olurlar. Çinko oksit nanopartiküllerinin tüm özellikleri, partikül boyutuna, şekline, konsantrasyonuna ve bakteri hücresine maruz kalma süresine bağlıdır. Ayrıca çinko oksit nanopartiküllerinin biyolojik dağılım çalışmaları da incelenmiştir. Örneğin Wang ve ark. 3 ila 35 hafta boyunca farelerde çinko oksit nanopartikülünün uzun süreli maruziyetinin biyolojik dağılım ve çinko metabolizması üzerindeki etkisini araştırmıştır. Elde ettikleri sonuçlar, diyette 50 ve 500 mg / kg çinko oksit nanopartiküllerine maruz kaldıklarında farelerde minimum toksisite gösterdi. 5000 mg / kg'lık daha yüksek dozda, çinko oksit nanopartikül vücut ağırlığını düşürdü, ancak pankreas, beyin ve akciğer ağırlığını arttırdı. Ayrıca, serum glutamik-pirüvik transaminaz aktivitesini ve metalotionein gibi çinko metabolizmasıyla ilişkili genlerin mRNA ekspresyonunu arttırdı. Biyolojik dağılım çalışmaları, karaciğer, pankreas, böbrekler ve kemiklerde yeterli miktarda çinko biriktiğini göstermiştir. Çinko oksit nanopartikül / çinko oksit mikropartiküllerinin emilimi ve dağılımı, büyük ölçüde partikül boyutuna bağlıdır. Li vd. 6 haftalık farelere ağızdan veya intraperitoneal enjeksiyon yoluyla beslenen çinko oksit nanopartiküllerinin biyo-dağıtımı üzerinde çalıştılar. 14 günlük çalışmada ağızdan tedavi edilen farelerde çinko oksit nanopartiküllerinde belirgin bir yan etki tespit edilmedi. Bununla birlikte, farelere verilen 2.5 g / kg vücut ağırlığı intraperitoneal enjeksiyon, kalp, karaciğer, dalak, akciğer, böbrek ve testislerde çinko birikimi göstermiştir. 72 saat sonra karaciğerde çinko oksit nanopartikülde yaklaşık dokuz kat artış gözlendi. Çinko oksit nanopartiküllerinin karaciğer, dalak ve böbrek biyo-dağılımında oral yoldan beslenen farelere göre daha iyi etkinliğe sahip olduğu gösterilmiştir. Çinko oksit nanopartiküller düşük konsantrasyonlarda zararsız olduklarından, insan ve bitkilerde belirli enzimleri uyararak hastalıkları bastırırlar. Singh vd. ayrıca son zamanlarda çinko oksit nanopartikülünün biyosentezi, bunların alımı, translokasyonu ve bitki sistemindeki biyotransformasyonu da gözden geçirildi.

Synonyms:
ZINC OXIDE; 1314-13-2; Zinc White; oxozinc; Amalox; ZnO; Chinese White; Snow white; Emanay zinc oxide; Felling zinc oxide; Zinc oxide (ZnO); Akro-zinc bar 85; Zinc monoxide; zink oxid; çinko oxid; Flowers of zinc; Azo-33; Outmine; Supertah; Zincite; Zincoid; Azodox; Ozide; Ozlo; Zincum Oxydatum; Zinci Oxicum; Zinci Oxydum; Flores de zinci; Hubbuck's White; Blanc de Zinc; Unichem ZO; Vandem VAC; Vandem VOC; çinko oksit; Vandem VPC; Green seal-8; Philosopher's wool; White seal-7; K-Zinc; Powder base 900; Protox type 166; Protox type 167; Protox type 168; Protox type 169; Protox type 267; Protox type 268; Akro-zinc bar 90; Azodox-55; Azodox-55TT; Red Seal 9; EMAR; CI Pigment white 4; Electrox 2500; Actox 14; Actox 16; Kadox 15; Kadox 72; Kadox-25; Zinc oxide [USAN]; Zinca 20; Protox 166; Protox 168; Protox 169; Caswell No. 920; Electox 2500; Cadox XX 78; Actox 216; Cynku tlenek [Polish]; Nogenol; C-Weiss 8 [German]; Azo-55TT; Azo-66TT; Azo-77TT; çinko oksit; Zinc gelatin; C.I. Pigment White 4; RVPaque; Azo 22; Azo-55; Azo-66; Azo-77; No-Genol; Pigment white 4; C.I. 77947; Dome Paste Bandage; A&D Medicated Ointment; XX 78; EINECS 215-222-5; XX 203; XX 601; EPA Pesticide Chemical Code 088502; ZN-0401 E 3/16''; Lassars Paste; Zinc oxide, ACS reagent; Lassar Paste; Zinc oxide, 99.5+%; ZNO; Desitin; zincum oxidatum; Cynku tlenek; oxyde de zinc; Zinc oxide fume; Zinc oxide substrate, 10x10x0.5mm, polished two sides, 0001 orientation; Zinc oxide, 99.99% trace metals basis; C-Weiss 8; Zinc oxide, 99.999%, (trace metal basis); Zinc oxide [USP:JAN]; Zinkoxid; oxido de cinc; Leaded zinc oxide; Zinc (as oxide); Zinc Oxide Powder; Zinc oxide (TN); Zine Oxide ,(S); Zinc (as zinc oxide); EC 215-222-5; Zinc oxide (JP17/USP); Zinc oxide, LR, >=99%; Zinc oxide, analytical standard; Zinc Oxide Nanopowder (Type I); Zinc oxide, p.a., 99.0%; Zinc Oxide Nanopowder (Type II); 9015AF; Zinc oxide, USP, 99-100.5%; Zinc Oxide Nanoparticles / Nanopowder; Zinc oxide, ACS reagent, >=99.0%; Zinc oxide, 30nm,20 wt.% isopropanol; Zinc oxide, tested according to Ph.Eur.; Zinc oxide, 99.999% trace metals basis; Zinc oxide, SAJ first grade, >=99.0%; Zinc oxide, JIS special grade, >=99.0%; Zinc oxide, nanopowder, <100 nm particle size; çinko oksit; Zinc Oxide Nanodispersion Type A-Nonionic (70nm); Zinc Oxide Nanodispersion Type B-Anionic (70nm); Zinc Oxide Nanodispersion Type C-Cationic (70nm); Zinc oxide, nanowires, diam. x L 90 nm x 1 mum; Zinc oxide, nanowires, diam. x L 50 nm x 300 nm; Zinc oxide, nanowires, diam. x L 300 nm x 4-5 mum; Zinc oxide, puriss. p.a., ACS reagent, >=99.0% (KT); Zinc oxide, nanopowder, <50 nm particle size (BET), >97%; Zinc oxide, ReagentPlus(R), powder, <5 mum particle size, 99.9%; Zinc oxide, United States Pharmacopeia (USP) Reference Standard; Zinc oxide substrate, 10x10x0.5mm, polished one side, 0001 orientation; Zinc oxide sputtering target, 76.2mm (3.0in) dia x 3.18mm (0.125in) thick; Zinc oxide sputtering target, 76.2mm (3.0in) dia x 6.35mm (0.250in) thick; Zinc oxide, dispersion, nanoparticles, <110 nm particle size, 40 wt. % in butyl acetate; Zinc oxide, dispersion, nanoparticles, 40 wt. % in ethanol, <130 nm particle size; Zinc oxide, dispersion, nanoparticles, <100 nm particle size (TEM), <=40 nm avg. part. size (APS), 20 wt. % in H2O; Zinc oxide, puriss., meets analytical specification of Ph. Eur., BP, USP, 99-100.5% (calc. for dried substance); Zinc oxide, sputtering target, diam. x thickness 3.00 in. x 0.125 in., 99.99% trace metals basis; ZINC OXIDE; 1314-13-2; Zinc White; oxozinc; Amalox; Chinese White; Snow white; Emanay zinc oxide; Felling zinc oxide; Zinc oxide (ZnO); Akro-zinc bar 85; Zinc monoxide; Flowers of zinc; Azo-33; Outmine; Supertah; Zincite; Zincoid; Azodox; Ozide; Ozl

  • Paylaş !
E-BÜLTEN