Quick Search

PRODUCTS

BRONOPOL

BRONOPOL

CAS No.:52-51-7

Synonyms:
bronopol; 2-Bromo-2-nitro-1,3-propanediol; 52-51-7; 2-Bromo-2-nitropropane-1,3-diol; Bronosol; Bronocot; Bronidiol; Bronopolu; Bronotak; Onyxide 500; Lexgard bronopol; 1,3-Propanediol, 2-bromo-2-nitro-; Bronopolum; Bronopolu [Polish]; 2-Nitro-2-bromo-1,3-propanediol; Caswell No. 116A; Bronopolum [INN-Latin]; C3H6BrNO4;

BRONOPOL

CAS No.:52-51-7

Synonyms:
bronopol; 2-Bromo-2-nitro-1,3-propanediol; 52-51-7; 2-Bromo-2-nitropropane-1,3-diol; Bronosol; Bronocot; Bronidiol; Bronopolu; Bronotak; Onyxide 500; Lexgard bronopol; 1,3-Propanediol, 2-bromo-2-nitro-; Bronopolum; Bronopolu [Polish]; 2-Nitro-2-bromo-1,3-propanediol; Caswell No. 116A; Bronopolum [INN-Latin]; C3H6BrNO4; Bronopol [INN:BAN:JAN]; UNII-6PU1E16C9W; BRONOPOL; NSC 141021; HSDB 7195; 2-Bromo-2-nitropropane-1,3-diol (Bronopol); DSSTox_RID_77484; DSSTox_GSID_24652; Q-200765; Bioban; 2-Bromo-2-nitropropane-1,3-diol [UN3241] [Flammable Solid]; Myacide AS plus; Myacide BT; CAS-52-51-7; Myacide Pharma BP; Canguard 409; BNPD; 2-Bromo-2-nitropropan-1,3-diol; ACMC-1ARSQ; AC1L1DPE; BNPD; BNPK; Bronopol; WLN: WNXE1Q1Q; 1, 2-bromo-2-nitro-; EC 200-143-0; SCHEMBL23260; Bronopol (JAN/USAN/INN); KSC911Q1T; Bioban BNPD-40 (Salt/Mix); CHEMBL1408862; DTXSID8024652; SCHEMBL16556987; CTK8B1819; KS-00000URD; LVDKZNITIUWNER-UHFFFAOYSA-; 2-bromo-2nitro-1,3-propanediol; MolPort-002-497-774; 2-b; bronopol; 2-Bromo-2-nitro-1,3-propanediol; 52-51-7; 2-Bromo-2-nitropropane-1,3-diol; Bronosol; Bronocot; Bronidiol; Bronopolu; Bronotak; Onyxide 500; Lexgard bronopol; 1,3-Propanediol, 2-bromo-2-nitro-; Bronopolum; Bronopolu [Polish]; 2-Nitro-2-bromo-1,3-propanediol; Caswell No. 116A; Bronopolum [INN-Latin]; C3H6BrNO4; Bronopol [INN:BAN:JAN]; UNII-6PU1E16C9W; BRONOPOL; NSC 141021; HSDB 7195; 2-Bromo-2-nitropropane-1,3-diol (Bronopol); DSSTox_RID_77484; DSSTox_GSID_24652; Q-200765; Bioban; 2-Bromo-2-nitropropane-1,3-diol [UN3241] [Flammable Solid]; Myacide AS plus; Myacide BT; CAS-52-51-7; Myacide Pharma BP; Canguard 409; BNPD; 2-Bromo-2-nitropropan-1,3-diol; ACMC-1ARSQ; AC1L1DPE; BNPD; BNPK; Bronopol; WLN: WNXE1Q1Q; 1, 2-bromo-2-nitro-; EC 200-143-0; SCHEMBL23260; Bronopol (JAN/USAN/INN); KSC911Q1T; Bioban BNPD-40 (Salt/Mix); CHEMBL1408862; DTXSID8024652; SCHEMBL16556987; CTK8B1819; KS-00000URD; LVDKZNITIUWNER-UHFFFAOYSA-; 2-bromo-2nitro-1,3-propanediol; MolPort-002-497-774; 2-bromo-2-nitro-1,3-propandiol; ALBB-031641; HY-B1217; ZINC1088216; Tox21_112079; Tox21_300126; 1,3-Propanediol,2-bromo-2-nitro-; ANW-31486; LS-172; MFCD00007390; NSC141021; s4553; SBB000393; 2-bromanyl-2-nitro-propane-1,3-diol; AKOS003606838; antimikrobiyal; organik; bromlanma; nitrozamin; hidrojen bromür; Allergens; bronopol; 2-Bromo-2-nitro-1,3-propanediol; 52-51-7; 2-Bromo-2-nitropropane-1,3-diol; Bronosol; Bronocot; Bronidiol; Bronopolu; Bronotak; Onyxide 500; Lexgard bronopol; 1,3-Propanediol, 2-bromo-2-nitro-; Bronopolum; Bronopolu [Polish]; 2-Nitro-2-bromo-1,3-propanediol; Caswell No. 116A; Bronopolum [INN-Latin]; C3H6BrNO4; Bronopol [INN:BAN:JAN]; UNII-6PU1E16C9W; BRONOPOL; NSC 141021; HSDB 7195; 2-Bromo-2-nitropropane-1,3-diol (Bronopol); DSSTox_RID_77484; DSSTox_GSID_24652; Q-200765; Bioban; 2-Bromo-2-nitropropane-1,3-diol [UN3241] [Flammable Solid]; Myacide AS plus; Myacide BT; CAS-52-51-7; Myacide Pharma BP; Canguard 409; BNPD; 2-Bromo-2-nitropropan-1,3-diol; ACMC-1ARSQ; AC1L1DPE; BNPD; BNPK; Bronopol; WLN: WNXE1Q1Q; 1, 2-bromo-2-nitro-; EC 200-143-0; SCHEMBL23260; Bronopol (JAN/USAN/INN); KSC911Q1T; Bioban BNPD-40 (Salt/Mix); CHEMBL1408862; DTXSID8024652; SCHEMBL16556987; CTK8B1819; KS-00000URD; LVDKZNITIUWNER-UHFFFAOYSA-; 2-bromo-2nitro-1,3-propanediol; MolPort-002-497-774; 2-bromo-2-nitro-1,3-propandiol; ALBB-031641; HY-B1217; ZINC1088216; Tox21_112079; Tox21_300126; 1,3-Propanediol,2-bromo-2-nitro-; ANW-31486; LS-172; MFCD00007390; NSC141021; s4553; SBB000393; 2-bromanyl-2-nitro-propane-1,3-diol; AKOS003606838; antimikrobiyal; organik; bromlanma; nitrozamin; hidrojen bromür; Allergens; klima veya nemlendirme sistemleri; 2-Bromo-2-nitro-1,3-propandiol; 2-bromo; 2-nitro; 1,3-propandiol; 2-bromo-2-nitro-1,3-propandiol; ALBB-031641; HY-B1217; ZINC1088216; Tox21_112079; Tox21_300126; 1,3-Propanediol,2-bromo-2-nitro-;  ANW-31486; LS-172; MFCD00007390; NSC141021; s4553; SBB000393; 2-bromanyl-2-nitro-propane-1,3-diol; AKOS003606838; antimikrobiyal; organik; bromlanma; nitrozamin; hidrojen bromür; Allergens; klima veya nemlendirme sistemleri; 2-Bromo-2-nitro-1,3-propandiol; 2-bromo; 2-nitro; 1,3-propandiol; bronopol; 2-Bromo-2-nitro-1,3-propanediol; 52-51-7; 2-Bromo-2-nitropropane-1,3-diol; Bronosol; Bronocot; Bronidiol; Bronopolu; Bronotak; Onyxide 500; Lexgard bronopol; 1,3-Propanediol, 2-bromo-2-nitro-; Bronopolum; Bronopolu [Polish]; 2-Nitro-2-bromo-1,3-propanediol; Caswell No. 116A; Bronopolum [INN-Latin]; C3H6BrNO4; Bronopol [INN:BAN:JAN]; UNII-6PU1E16C9W; BRONOPOL; NSC 141021; HSDB 7195; 2-Bromo-2-nitropropane-1,3-diol (Bronopol); DSSTox_RID_77484; DSSTox_GSID_24652; Q-200765; Bioban; 2-Bromo-2-nitropropane-1,3-diol [UN3241] [Flammable Solid]; Myacide AS plus; Myacide BT; CAS-52-51-7; Myacide Pharma BP; Canguard 409; BNPD; 2-Bromo-2-nitropropan-1,3-diol; ACMC-1ARSQ; AC1L1DPE; BNPD; BNPK; Bronopol; WLN: WNXE1Q1Q; 1, 2-bromo-2-nitro-; EC 200-143-0; SCHEMBL23260; Bronopol (JAN/USAN/INN); KSC911Q1T; Bioban BNPD-40 (Salt/Mix); CHEMBL1408862; DTXSID8024652; SCHEMBL16556987; CTK8B1819; KS-00000URD; LVDKZNITIUWNER-UHFFFAOYSA-; 2-bromo-2nitro-1,3-propanediol; MolPort-002-497-774; 2-bromo-2-nitro-1,3-propandiol; ALBB-031641; HY-B1217; ZINC1088216; Tox21_112079; Tox21_300126; 1,3-Propanediol,2-bromo-2-nitro-; ANW-31486; LS-172; MFCD00007390; NSC141021; s4553; SBB000393; 2-bromanyl-2-nitro-propane-1,3-diol; AKOS003606838; antimikrobiyal; organik; bromlanma; nitrozamin; hidrojen bromür; Allergens; bronopol; 2-Bromo-2-nitro-1,3-propanediol; 52-51-7; 2-Bromo-2-nitropropane-1,3-diol; Bronosol; Bronocot; Bronidiol; Bronopolu; Bronotak; Onyxide 500; Lexgard bronopol; 1,3-Propanediol, 2-bromo-2-nitro-; Bronopolum; Bronopolu [Polish]; 2-Nitro-2-bromo-1,3-propanediol; Caswell No. 116A; Bronopolum [INN-Latin]; C3H6BrNO4; Bronopol [INN:BAN:JAN]; UNII-6PU1E16C9W; BRONOPOL; NSC 141021; HSDB 7195; 2-Bromo-2-nitropropane-1,3-diol (Bronopol); DSSTox_RID_77484; DSSTox_GSID_24652; Q-200765; Bioban; 2-Bromo-2-nitropropane-1,3-diol [UN3241] [Flammable Solid]; Myacide AS plus; Myacide BT; CAS-52-51-7; Myacide Pharma BP; Canguard 409; BNPD; 2-Bromo-2-nitropropan-1,3-diol; ACMC-1ARSQ; AC1L1DPE; BNPD; BNPK; Bronopol; WLN: WNXE1Q1Q; 1, 2-bromo-2-nitro-; EC 200-143-0; SCHEMBL23260; Bronopol (JAN/USAN/INN); KSC911Q1T; Bioban BNPD-40 (Salt/Mix); CHEMBL1408862; DTXSID8024652; SCHEMBL16556987; CTK8B1819; KS-00000URD;  LVDKZNITIUWNER-UHFFFAOYSA-; 2-bromo-2nitro-1,3-propanediol; MolPort-002-497-774; 2-bromo-2-nitro-1,3-propandiol; ALBB-031641; HY-B1217; ZINC1088216; Tox21_112079; Tox21_300126; 1,3-Propanediol,2-bromo-2-nitro-; ANW-31486; LS-172; MFCD00007390; NSC141021; s4553; SBB000393; 2-bromanyl-2-nitro-propane-1,3-diol; AKOS003606838; antimikrobiyal; organik; bromlanma; nitrozamin; hidrojen bromür; bronopol; 2-Bromo-2-nitro-1,3-propanediol; 52-51-7; 2-Bromo-2-nitropropane-1,3-diol; Bronosol; Bronocot; Bronidiol; Bronopolu; Bronotak; Onyxide 500; Lexgard bronopol; 1,3-Propanediol, 2-bromo-2-nitro-; Bronopolum; Bronopolu [Polish]; 2-Nitro-2-bromo-1,3-propanediol; Caswell No. 116A; Bronopolum [INN-Latin]; C3H6BrNO4; Bronopol [INN:BAN:JAN]; UNII-6PU1E16C9W; BRONOPOL; NSC 141021; HSDB 7195; 2-Bromo-2-nitropropane-1,3-diol (Bronopol); DSSTox_RID_77484; DSSTox_GSID_24652; Q-200765; Bioban; 2-Bromo-2-nitropropane-1,3-diol [UN3241] [Flammable Solid]; Myacide AS plus; Myacide BT; CAS-52-51-7; Myacide Pharma BP; Canguard 409; BNPD; 2-Bromo-2-nitropropan-1,3-diol; ACMC-1ARSQ; AC1L1DPE; BNPD; BNPK; Bronopol; WLN: WNXE1Q1Q; 1, 2-bromo-2-nitro-; EC 200-143-0; SCHEMBL23260; Bronopol (JAN/USAN/INN); KSC911Q1T; Bioban BNPD-40 (Salt/Mix); CHEMBL1408862; DTXSID8024652; SCHEMBL16556987; CTK8B1819; KS-00000URD; LVDKZNITIUWNER-UHFFFAOYSA-; 2-bromo-2nitro-1,3-propanediol; MolPort-002-497-774; 2-bromo-2-nitro-1,3-propandiol; ALBB-031641;HY-B1217; ZINC1088216; Tox21_112079; Tox21_300126; 1,3-Propanediol,2-bromo-2-nitro-; ANW-31486; LS-172; MFCD00007390; NSC141021; s4553; SBB000393; 2-bromanyl-2-nitro-propane-1,3-diol; AKOS003606838; Allergens; klima veya nemlendirme sistemleri; 2-Bromo-2-nitro-1,3-propandiol; 2-bromo; 2-nitro; 1,3-propandiol; 2-bromo-2-nitro-1,3-propandiol; ALBB-031641; HY-B1217; ZINC1088216; Tox21_112079; Tox21_300126; 1,3-Propanediol,2-bromo-2-nitro-; ANW-31486; LS-172; MFCD00007390; NSC141021; s4553; SBB000393; 2-bromanyl-2-nitro-propane-1,3-diol; AKOS003606838; antimikrobiyal; organik; bromlanma; nitrozamin; hidrojen bromür; Allergens; klima veya nemlendirme sistemleri; 2-Bromo-2-nitro-1,3-propandiol; 2-bromo; 2-nitro; 1,3-propandiol; bronopol; BRONOPOL; bronopole; BRONOPOLe; brono pol; BRONO POL; brono pole; BRONO POLE; pronobol; pronobole; pronopol; PRONOPOL; pronopole; PRONOPOLE; prono pol; PRONO POL; prono pole; PRONO POLE

BRONOPOL 

Bronopol 3D ball-and-stick.png
Names
IUPAC name
2-Bromo-2-nitropropane-1,3-diol
Identifiers
CAS Number
52-51-7 ☑
3D model (JSmol)
Interactive image
ChEMBL 
ChEMBL1408862 ☒
ChemSpider 
2356 ☑
ECHA InfoCard    100.000.131
EC Number 
200-143-0
KEGG 
D01577 ☑
PubChem CID
2450
RTECS number 
TY3385000
UNII 
6PU1E16C9W ☑
UN number    3241
CompTox Dashboard (EPA)
DTXSID8024652 Edit this at Wikidata
InChI[show]
SMILES[show]
Properties
Chemical formula
C3H6BrNO4
Molar mass    199.988 g·mol-1
Appearance    White solid
Density    1.1 g/cm3
Melting point    130 °C (266 °F; 403 K)
Boiling point    140 °C (284 °F; 413 K) (decomposes)
Pharmacology
ATCvet code
QD01AE91 (WHO)
Hazards
GHS pictograms    GHS05: CorrosiveGHS07: HarmfulGHS09: Environmental hazard
GHS Signal word    Danger
GHS hazard statements
H302, H312, H315, H318, H335, H400
GHS precautionary statements
P261, P264, P270, P271, P273, P280, P301+312, P302+352, P304+340, P305+351+338, P310, P312, P321, P322, P330, P332+313, P362, P363, P391, P403+233, P405, P501
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒ verify (what is ☑☒ ?)
Infobox references
Bronopol (INN; chemical name 2-bromo-2-nitro-1,3-propanediol) is an organic compound that is used as an antimicrobial. It is a white solid although commercial samples appear yellow.
 
The first reported synthesis of bronopol was in 1897.[citation needed]

Bronopol was invented by The Boots Company PLC in the early 1960s and first applications were as a preservative for pharmaceuticals. Due to its low mammalian toxicity at in-use levels and high activity against bacteria, especially Gram-negative species,[1] bronopol became popular as a preservative in many consumer products such as shampoos and cosmetics. It was subsequently adopted as an antimicrobial in other industrial environments such as paper mills, oil exploration, and production facilities, as well as cooling water disinfection plants.

Contents
1    Production
2    Applications
3    Physical and chemical properties
3.1    Appearance
3.2    Melting point
3.3    Solubility
3.4    Partition coefficient
3.5    Stability in aqueous solution
3.6    Degradation
4    Allergy
5    See also
6    References
7    External links
Production
Bronopol is produced by the bromination of di(hydroxymethyl)nitromethane, which is derived from nitromethane by a nitroaldol reaction.[2] World production increased from the tens of tonnes in the late 1970s to current estimates in excess of 5,000 tonnes. Manufacturing today is the business of low cost producers, mainly in China.
 

Applications
This section needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Bronopol" - news · newspapers · books · scholar · JSTOR (January 2017) (Learn how and when to remove this template message)
Bronopol is used in consumer products as an effective preservative agent, as well as a wide variety of industrial applications (almost any industrial water system is a potential environment for bacterial growth, leading to slime and corrosion problems - in many of these systems bronopol can be a highly effective treatment).
 
The use of bronopol in personal care products (cosmetics, toiletries) has declined since the late 1980s due to the potential formation of nitrosamines. While bronopol is not in itself a nitrosating agent, under conditions where it decomposes (alkaline solution and/or elevated temperatures) it can liberate nitrite and low levels of formaldehyde and these decomposition products can react with any contaminant secondary amines or amides in a personal care formulation to produce significant levels of nitrosamines (due to the toxicity of these substances, the term `significant` means levels as low as 10s of parts per billion).

Manufacturers of personal care products are therefore instructed by regulatory authorities to avoid the formation of nitrosamines which might mean removing amines or amides from the formulation, removing bronopol from a formulation, or using nitrosamine inhibitors.
Bronopol has been restricted for use in cosmetics in Canada.[3]

Physical and chemical properties
Appearance
Bronopol is supplied as crystals or crystalline powder, which may vary from white to pale yellow in colour depending on the grade. The yellow coloration is due to chelation of iron during the manufacturing process.
 
Melting point
As a pure material, bronopol has a melting point of about 130 °C. However, due to its polymorphic characteristics, bronopol undergoes a lattice rearrangement at 100 to 105 °C and this can often be wrongly interpreted as the melting point.
At temperatures above 140 °C, bronopol decomposes exothermically releasing hydrogen bromide and oxides of nitrogen.
Solubility
Bronopol is readily soluble in water; the dissolution process is endothermic. Solutions containing up to 28% w/v are possible at ambient temperature.
Bronopol is poorly soluble in non-polar solvents but shows a high affinity for polar organic solvents.
Solubilities at 22-25 °C
Solvent    %w/v
Water    28
Methanol    89
Ethanol    56
Isopropanol    41
Liquid Paraffin    <0.5
Partition coefficient
Study of the solubility data shows that bronopol has a high affinity for polar rather than non-polar environments. In two-phase systems, bronopol partitions preferentially into the polar (usually aqueous) phase.
 
Partition coefficients at 22-24 °C
Solvent Combination    Partition Co-efficient
Hexanol/Water    0.74
Alkane|Liquid Paraffin/Water    0.043
Chloroform/Water    0.068
Stability in aqueous solution
In aqueous solutions, bronopol is most stable when the pH of the system is on the acid side of neutral. Temperature also has a significant effect on stability in alkaline systems.

Degradation
Under extreme alkaline conditions, bronopol decomposes in aqueous solution and very low levels of formaldehyde are produced.[4] Liberated formaldehyde is not responsible for the biological activity associated with bronopol. Other decomposition products detected after bronopol breakdown are bromide ion, nitrite ion, bromonitroethanol and 2-hydroxymethyl-2-nitropropane-1,3-diol.
 
Allergy
Patch test
In 2005-2006, it was the 15th-most-prevalent allergen in patch tests (3.4%) of people with suspected allergic contact dermatitis.[5] It is used as a substitute for formaldehyde, a disinfectant and preservative, in solvents. It is prevalent in skin and personal care products and topical medications.[6]
See also
Bronidox
About Bronopol
Helpful information
Bronopol is manufactured and/or imported in the European Economic Area in 100 - 1 000 tonnes per year.
Bronopol is used by consumers, by professional workers (widespread uses) and in formulation or re-packing.

Biocidal Uses
Bronopol is being reviewed for use as a biocide in the EEA and/or Switzerland, for: disinfection, product preservation, preservation of fibres, leather, rubber, or polymers, preservation for liquid systems, controlling slimes, embalming or taxidermy.
 
Consumer Uses
Bronopol is used in the following products: cosmetics and personal care products, perfumes and fragrances, fertilisers and plant protection products.
Other release to the environment of Bronopol is likely to occur from: outdoor use as processing aid and indoor use as processing aid.
Article service life
ECHA has no public registered data on the routes by which Bronopol is most likely to be released to the environment. ECHA has no public registered data indicating whether or into which articles the substance might have been processed.
 
Widespread uses by professional workers
Bronopol is used in the following products: fertilisers, plant protection products, perfumes and fragrances, cosmetics and personal care products and washing & cleaning products.
Bronopol is used in the following areas: agriculture, forestry and fishing and formulation of mixtures and/or re-packaging.
Other release to the environment of Bronopol is likely to occur from: outdoor use as processing aid and indoor use as processing aid.
Formulation or re-packing
Bronopol is used in the following products: laboratory chemicals, biocides (e.g. disinfectants, pest control products), fertilisers, plant protection products, perfumes and fragrances, cosmetics and personal care products and washing & cleaning products.
Release to the environment of Bronopol can occur from industrial use: formulation of mixtures and formulation in materials.
Uses at industrial sites
ECHA has no public registered data indicating whether or in which chemical products the substance might be used. ECHA has no public registered data on the types of manufacture using Bronopol. ECHA has no public registered data on the routes by which Bronopol is most likely to be released to the environment.

Manufacture
ECHA has no public registered data on the routes by which Bronopol is most likely to be released to the environment.

Bronopol is a Standardized Chemical Allergen. The physiologic effect of bronopol is by means of Increased Histamine Release, and Cell-mediated Immunity. The chemical classification of bronopol is Allergens.

Bronopol, or 2-Bromo-2-nitro-1,3-propanediol, is an inorganic compound with wide-spectrum antimicrobial properties. First synthesized in 1897, bronopol was primarily used as a preservative for pharmaceuticals and was registered in the United States in 1984 for use in industrial bactericides, slimicides and preservatives [F13]. Bronopol is used as a microbicide or microbiostat in various commercial and industrial applications, including oil field systems, air washer systems, air conditioning or humidifying systems, cooling water systems, papermills, absorbent clays, metal working fluids, printing inks, paints, adhesives and consumer products [F13]. Compared to other aliphatic halogen-nitro compounds, bronopol is more stable to hydrolysis in aqueous media under normal conditions [A32792]. The inhibitory activity against various bacteria, including _Pseudomonas aeruginosa_, was demonstrated _in vitro_ [A32792]. Bronopol is approved for use in antibacterial OTC products in Canada.

2-BROMO-2-NITROPROPANE-1,3-DIOL is a white crystals. Ignite easily and burn readily. May detonate under strong shock. Decomposes when heated, evolving toxic gases. Toxic by skin absorption, inhalation or ingestion.
Bronopol (INN) is an organic compound that is used as an antimicrobial. It is a white solid although commercial samples appear yellow.
The first cited synthesis of 2-Bromo-2-nitro-1,3-propanediol is 1897 according to Molbase.
Bronopol was invented by The Boots Company PLC in the early 1960s and first applications were as a preservative for pharmaceuticals. Owing to its low mammalian toxicity (at in-use levels) and high activity against bacteria (especially the troublesome Gram-negative species) bronopol became popular as a preservative in many consumer products such as shampoos and cosmetics. It was subsequently adopted as an antimicrobial in other industrial environments such as paper mills, oil exploration and production facilities, as well as cooling water disinfection plants.
Production
Bronopol is produced by the bromination of di(hydroxymethyl)nitromethane, which is derived from nitromethane by a nitroaldol reaction. World production increased from the tens of tonnes in the late 1970s to current estimates in excess of 5,000 tonnes. Manufacturing today is the business of low cost producers, mainly in China.
Applications
Bronopol is used in consumer products as an effective preservative agent, as well as a wide variety of industrial applications (almost any industrial water system is a potential environment for bacterial growth, leading to slime and corrosion problems - in many of these systems Bronopol can be a highly effective treatment).
The use of bronopol in personal care products (cosmetics, toiletries) has declined since the late 1980s due to the potential formation of nitrosamines. While Bronopol is not in itself a nitrosating agent, under conditions where it decomposes (alkaline solution and/or elevated temperatures) it can liberate nitrite and low levels of formaldehyde and these decomposition products can react with any contaminant secondary amines or amides in a personal care formulation to produce significant levels of nitrosamines (due to the toxicity of these substances, the term `significant` means levels as low as 10s of parts per billion).
Manufacturers of personal care products are therefore instructed by regulatory authorities to `avoid the formation of nitrosamines` which might mean removing amines or amides from the formulation, removing Bronopol from a formulation, or using nitrosamine inhibitors.
Bronopol has been restricted for use in cosmetics in Canada. 
Physical and chemical properties
Appearance
Bronopol is supplied as crystals or crystalline powder, which may vary from white to pale yellow in colour depending on the grade. The yellow colouration is due to chelation of iron during the manufacturing process.
Melting point
As a pure material, Bronopol has a melting point of about 130 °C. However, due to its polymorphic characteristics, Bronopol undergoes a lattice rearrangement at 100 to 105 °C and this can often be wrongly interpreted as the melting point.
At temperatures above 140 °C, bronopol decomposes exothermically releasing hydrogen bromide and oxides of nitrogen.
Solubility
Bronopol is readily soluble in water; the dissolution process is endothermic. Solutions containing up to 28% w/v are possible at ambient temperature.
Bronopol is poorly soluble in non-polar solvents but shows a high affinity for polar organic solvents.
Partition coefficient
Study of the solubility data clearly shows that Bronopol has a high affinity for polar rather than non-polar environments. In two phase systems, Bronopol partitions preferentially into the polar (usually aqueous) phase.
Stability in aqueous solution
In aqueous solutions, bronopol is most stable when the pH of the system is on the acid side of neutral. Temperature also has a significant effect on stability in alkaline systems.
Degradation
Under extreme alkaline conditions, bronopol decomposes in aqueous solution and very low levels of formaldehyde are produced. Liberated formaldehyde is not responsible for the biological activity associated with bronopol. Other decomposition products detected after bronopol breakdown are bromide ion, nitrite ion, bromonitroethanol and 2-hydroxymethyl-2-nitropropane-1,3-diol.
Allergy
In 2005-06, it was the 15th-most-prevalent allergen in patch tests (3.4%) of people with suspected allergic contact dermatitis. It is used as a substitute for formaldehyde, a disinfectant and preservative, in solvents. It is prevalent in skin and personal care products and topical medications.
Properties: Biocidal products containing active ingredient Bronopol are used for the preservation of industrial and consumer products and for conditioning industrial and process water. Bronopol is soluble in water and compatible with proteins and non-ionic. Mantarsal activity is poor, poor stability over pH 8, associated with nitrosamine formation, detectable formaldehyde release. Typical usage concentration is between 0,01-0,04%.

Solubility and miscibility: Bronopol can be easily incorporated into aqueous formulation systems. Concentrated aqueous solutions tend to crystallize at low temperatures. Bronopol dissolves poorly in polar solvents, but organic polar solvents show a high degree of interest.
In non-aqueous systems, it is possible to achieve an effective level of Bronopol by using a suitable carrier solvent with careful selection of the raw materials.

Storage stability: When stored at ambient temperature, sealed packaging, Bronopol crystal types are stable for at least 3 years and liquid formulations are stable for at least 2 years. When aqueous solutions of crystalline material are prepared, bronopol is most stable when the pH of the system is acidic. In the presence of buffers, Bronopol`s concentration solutions tend to be self-stabilizing. The best pH for stability is around 4 and the data obtained from studies in dilute solutions of Bronopol show that the lifetime at pH = 4 and room temperature is more than 5 years. At pH and temperature increases, aqueous bronopol solutions become less stable.

Compatibility: Indicates that the concentrated aqueous solutions (20%) of the bronopol solutions (321 type) are compatible with solid PVC, Polyethylene (XDG33), plasticized PVC, silicone rubber, nylon and polypropylene in stainless steel. A diluted aqueous bronopol solution (0.02%) (representative of the level of use); stainless steel (321), aluminum, brass, copper, solid PVC, polyethylene (WJ611) and polyethylene (XD633).
Antimicrobial activity: Bronopol has a complex style of antimicrobial action. It has a broad spectrum against all groups of Bronopol bacteria containing bacteria-reducing anaerobic sulphate. The majority of bacteria are stopped between 6.25 and 50 ppm.

More doses are needed to reduce the activity of Bronopol`s fungi more and more generally. Most yeasts and molds require about 400 to 1600 ppm search. This procedure can not always control bronchopneumic dosages alone. It is not like this, it can be used with other assets. The Bronopol industry has pressure diagnostics:

Paper industry biocides: Processes of water treatment and mill (grinding). Calcium carbonate processing paper mill (grinding) additive preservative.
Water and oil field biocides:
Increasing oil recovery and conditioning cleaning waters such as cooling towers.
Bronopol is capable of controlling microbial contamination (in piercing mud). Tests show that you can clear all levels of contamination.
Industrial product enclosure:
Technical files such as polymer emulsion adhesives and motor materials. Bronopol is a very low level in a multidimensional arrangement.

Pharmacology
At concentrations of 12.5 to 50 µg/mL, bronopol mediated an inhibitory activity against various strains of Gram negative and positive bacteria _in vitro_ [A32792]. The bactericidal activity is reported to be greater against Gram-negative bacteria than against Gram-positive cocci [A32792]. Bronopol was also demonstrated to be effective against various fungal species, but the inhibitory action is reported to be minimal compared to that of against bacterial species [A32792]. The inhibitory activity of bronopol decreases with increasing pH of the media [A32792, F13]. Bronopol also elicits an anti-protozoal activity, as demonstrated with _Ichthyophthirius multifiliis_ _in vitro_ and _in vivo_ [A32791]. It is proposed that bronopol affects the survival of all free-living stages of _I. multifiliis_ [A32791].
 
Health Hazard
Excerpt from ERG Guide 133 [Flammable Solids]: Fire may produce irritating and/or toxic gases. Contact may cause burns to skin and eyes. Contact with molten substance may cause severe burns to skin and eyes. Runoff from fire control may cause pollution. 
Fire Hazard
Excerpt from ERG Guide 133 [Flammable Solids]: Flammable/combustible material. May be ignited by friction, heat, sparks or flames. Some may burn rapidly with flare-burning effect. Powders, dusts, shavings, borings, turnings or cuttings may explode or burn with explosive violence. Substance may be transported in a molten form at a temperature that may be above its flash point. May re-ignite after fire is extinguished. 
Combustible. Gives off irritating or toxic fumes (or gases) in a fire.
Fire Potential
Combustible.
Skin, Eye, and Respiratory Irritations
The substance irritates the eyes, the skin and the respiratory tract.
 
Safety and Hazard Properties
Chemical Dangers
Decomposes on heating and on burning. This produces toxic and corrosive fumes including hydrogen bromide and nitrogen oxides. Reacts with some metals, amines and alkaline compounds.
First Aid Measures
First Aid
EYES: First check the victim for contact lenses and remove if present. Flush victim`s eyes with water or normal saline solution for 20 to 30 minutes while simultaneously calling a hospital or poison control center. Do not put any ointments, oils, or medication in the victim`s eyes without specific instructions from a physician. IMMEDIATELY transport the victim after flushing eyes to a hospital even if no symptoms (such as redness or irritation) develop. SKIN: IMMEDIATELY flood affected skin with water while removing and isolating all contaminated clothing. Gently wash all affected skin areas thoroughly with soap and water. If symptoms such as redness or irritation develop, IMMEDIATELY call a physician and be prepared to transport the victim to a hospital for treatment. INHALATION: IMMEDIATELY leave the contaminated area; take deep breaths of fresh air. If symptoms (such as wheezing, coughing, shortness of breath, or burning in the mouth, throat, or chest) develop, call a physician and be prepared to transport the victim to a hospital. Provide proper respiratory protection to rescuers entering an unknown atmosphere. Whenever possible, Self-Contained Breathing Apparatus (SCBA) should be used; if not available, use a level of protection greater than or equal to that advised under Protective Clothing. INGESTION: DO NOT INDUCE VOMITING. If the victim is conscious and not convulsing, give 1 or 2 glasses of water to dilute the chemical and IMMEDIATELY call a hospital or poison control center. Be prepared to transport the victim to a hospital if advised by a physician. If the victim is convulsing or unconscious, do not give anything by mouth, ensure that the victim`s airway is open and lay the victim on his/her side with the head lower than the body. DO NOT INDUCE VOMITING. IMMEDIATELY transport the victim to a hospital.
 
Inhalation First Aid
Fresh air, rest.
Skin First Aid
Remove contaminated clothes. Rinse skin with plenty of water or shower.
Eye First Aid
First rinse with plenty of water for several minutes (remove contact lenses if easily possible), then refer for medical attention.
Ingestion First Aid
Rinse mouth. Induce vomiting (ONLY IN CONSCIOUS PERSONS!).
Fire Fighting Measures
Wear self contained breathing apparatus for fire fighting if necessary.
Use water spray to cool unopened containers.
Suitable extinguishing media: Use water spray, alcohol-resistant foam, dry chemical or carbon dioxide.
Powder, alcohol-resistant foam, water spray, carbon dioxide.
Fire Fighting
Excerpt from ERG Guide 133 [Flammable Solids]: SMALL FIRE: Dry chemical, CO2, sand, earth, water spray or regular foam. LARGE FIRE: Water spray, fog or regular foam. Move containers from fire area if you can do it without risk. Fire Involving Metal Pigments or Pastes (e.g. "Aluminum Paste") Aluminum Paste fires should be treated as a combustible metal fire. Use DRY sand, graphite powder, dry sodium chloride-based extinguishers, G-1® or Met-L-X® powder. Also, see ERG Guide 170. FIRE INVOLVING TANKS OR CAR/TRAILER LOADS: Cool containers with flooding quantities of water until well after fire is out. For massive fire, use unmanned hose holders or monitor nozzles; if this is impossible, withdraw from area and let fire burn. Withdraw immediately in case of rising sound from venting safety devices or discoloration of tank. ALWAYS stay away from tanks engulfed in fire. 
Use water spray, powder, alcohol-resistant foam, carbon dioxide.
 
Bronopol is a Standardized Chemical Allergen. The physiologic effect of bronopol is by means of Increased Histamine Release, and Cell-mediated Immunity. The chemical classification of bronopol is Allergens.
 
Bronopol, or 2-Bromo-2-nitro-1,3-propanediol, is an inorganic compound with wide-spectrum antimicrobial properties. First synthesized in 1897, bronopol was primarily used as a preservative for pharmaceuticals and was registered in the United States in 1984 for use in industrial bactericides, slimicides and preservatives [F13]. Bronopol is used as a microbicide or microbiostat in various commercial and industrial applications, including oil field systems, air washer systems, air conditioning or humidifying systems, cooling water systems, papermills, absorbent clays, metal working fluids, printing inks, paints, adhesives and consumer products [F13]. Compared to other aliphatic halogen-nitro compounds, bronopol is more stable to hydrolysis in aqueous media under normal conditions [A32792]. The inhibitory activity against various bacteria, including _Pseudomonas aeruginosa_, was demonstrated _in vitro_ [A32792]. Bronopol is approved for use in antibacterial OTC products in Canada.

2-BROMO-2-NITROPROPANE-1,3-DIOL is a white crystals. Ignite easily and burn readily. May detonate under strong shock. Decomposes when heated, evolving toxic gases. Toxic by skin absorption, inhalation or ingestion.

Bronopol (INN) is an organic compound that is used as an antimicrobial. It is a white solid although commercial samples appear yellow.
The first cited synthesis of 2-Bromo-2-nitro-1,3-propanediol is 1897 according to Molbase.
Bronopol was invented by The Boots Company PLC in the early 1960s and first applications were as a preservative for pharmaceuticals. Owing to its low mammalian toxicity (at in-use levels) and high activity against bacteria (especially the troublesome Gram-negative species) bronopol became popular as a preservative in many consumer products such as shampoos and cosmetics. It was subsequently adopted as an antimicrobial in other industrial environments such as paper mills, oil exploration and production facilities, as well as cooling water disinfection plants.
Production
Bronopol is produced by the bromination of di(hydroxymethyl)nitromethane, which is derived from nitromethane by a nitroaldol reaction. World production increased from the tens of tonnes in the late 1970s to current estimates in excess of 5,000 tonnes. Manufacturing today is the business of low cost producers, mainly in China.
Applications
Bronopol is used in consumer products as an effective preservative agent, as well as a wide variety of industrial applications (almost any industrial water system is a potential environment for bacterial growth, leading to slime and corrosion problems - in many of these systems Bronopol can be a highly effective treatment).
The use of bronopol in personal care products (cosmetics, toiletries) has declined since the late 1980s due to the potential formation of nitrosamines. While Bronopol is not in itself a nitrosating agent, under conditions where it decomposes (alkaline solution and/or elevated temperatures) it can liberate nitrite and low levels of formaldehyde and these decomposition products can react with any contaminant secondary amines or amides in a personal care formulation to produce significant levels of nitrosamines (due to the toxicity of these substances, the term `significant` means levels as low as 10s of parts per billion).
Manufacturers of personal care products are therefore instructed by regulatory authorities to `avoid the formation of nitrosamines` which might mean removing amines or amides from the formulation, removing Bronopol from a formulation, or using nitrosamine inhibitors.
Bronopol has been restricted for use in cosmetics in Canada. 
Physical and chemical properties
Appearance
Bronopol is supplied as crystals or crystalline powder, which may vary from white to pale yellow in colour depending on the grade. The yellow colouration is due to chelation of iron during the manufacturing process.
Melting point
As a pure material, Bronopol has a melting point of about 130 °C. However, due to its polymorphic characteristics, Bronopol undergoes a lattice rearrangement at 100 to 105 °C and this can often be wrongly interpreted as the melting point.
At temperatures above 140 °C, bronopol decomposes exothermically releasing hydrogen bromide and oxides of nitrogen.
Solubility
Bronopol is readily soluble in water; the dissolution process is endothermic. Solutions containing up to 28% w/v are possible at ambient temperature.
Bronopol is poorly soluble in non-polar solvents but shows a high affinity for polar organic solvents.
Partition coefficient
Study of the solubility data clearly shows that Bronopol has a high affinity for polar rather than non-polar environments. In two phase systems, Bronopol partitions preferentially into the polar (usually aqueous) phase.
Stability in aqueous solution
In aqueous solutions, bronopol is most stable when the pH of the system is on the acid side of neutral. Temperature also has a significant effect on stability in alkaline systems.
Degradation
Under extreme alkaline conditions, bronopol decomposes in aqueous solution and very low levels of formaldehyde are produced. Liberated formaldehyde is not responsible for the biological activity associated with bronopol. Other decomposition products detected after bronopol breakdown are bromide ion, nitrite ion, bromonitroethanol and 2-hydroxymethyl-2-nitropropane-1,3-diol.
Allergy
 
In 2005-06, it was the 15th-most-prevalent allergen in patch tests (3.4%) of people with suspected allergic contact dermatitis. It is used as a substitute for formaldehyde, a disinfectant and preservative, in solvents. It is prevalent in skin and personal care products and topical medications.

Properties: Biocidal products containing active ingredient Bronopol are used for the preservation of industrial and consumer products and for conditioning industrial and process water. Bronopol is soluble in water and compatible with proteins and non-ionic. Mantarsal activity is poor, poor stability over pH 8, associated with nitrosamine formation, detectable formaldehyde release. Typical usage concentration is between 0,01-0,04%.

Solubility and miscibility: Bronopol can be easily incorporated into aqueous formulation systems. Concentrated aqueous solutions tend to crystallize at low temperatures. Bronopol dissolves poorly in polar solvents, but organic polar solvents show a high degree of interest.
In non-aqueous systems, it is possible to achieve an effective level of Bronopol by using a suitable carrier solvent with careful selection of the raw materials.
Storage stability: When stored at ambient temperature, sealed packaging, Bronopol crystal types are stable for at least 3 years and liquid formulations are stable for at least 2 years. When aqueous solutions of crystalline material are prepared, bronopol is most stable when the pH of the system is acidic. In the presence of buffers, Bronopol`s concentration solutions tend to be self-stabilizing. The best pH for stability is around 4 and the data obtained from studies in dilute solutions of Bronopol show that the lifetime at pH = 4 and room temperature is more than 5 years. At pH and temperature increases, aqueous bronopol solutions become less stable.

Compatibility: Indicates that the concentrated aqueous solutions (20%) of the bronopol solutions (321 type) are compatible with solid PVC, Polyethylene (XDG33), plasticized PVC, silicone rubber, nylon and polypropylene in stainless steel. A diluted aqueous bronopol solution (0.02%) (representative of the level of use); stainless steel (321), aluminum, brass, copper, solid PVC, polyethylene (WJ611) and polyethylene (XD633).

Antimicrobial activity: Bronopol has a complex style of antimicrobial action. It has a broad spectrum against all groups of Bronopol bacteria containing bacteria-reducing anaerobic sulphate. The majority of bacteria are stopped between 6.25 and 50 ppm.
More doses are needed to reduce the activity of Bronopol`s fungi more and more generally. Most yeasts and molds require about 400 to 1600 ppm search. This procedure can not always control bronchopneumic dosages alone. It is not like this, it can be used with other assets. The Bronopol industry has pressure diagnostics:
Paper industry biocides: Processes of water treatment and mill (grinding). Calcium carbonate processing paper mill (grinding) additive preservative.
Water and oil field biocides:
Increasing oil recovery and conditioning cleaning waters such as cooling towers.
Bronopol is capable of controlling microbial contamination (in piercing mud). Tests show that you can clear all levels of contamination.
Industrial product enclosure:
Technical files such as polymer emulsion adhesives and motor materials. Bronopol is a very low level in a multidimensional arrangement.

Pharmacology
At concentrations of 12.5 to 50 μg/mL, bronopol mediated an inhibitory activity against various strains of Gram negative and positive bacteria _in vitro_ [A32792]. The bactericidal activity is reported to be greater against Gram-negative bacteria than against Gram-positive cocci [A32792]. Bronopol was also demonstrated to be effective against various fungal species, but the inhibitory action is reported to be minimal compared to that of against bacterial species [A32792]. The inhibitory activity of bronopol decreases with increasing pH of the media [A32792, F13]. Bronopol also elicits an anti-protozoal activity, as demonstrated with _Ichthyophthirius multifiliis_ _in vitro_ and _in vivo_ [A32791]. It is proposed that bronopol affects the survival of all free-living stages of _I. multifiliis_ [A32791].
 
Health Hazard
Excerpt from ERG Guide 133 [Flammable Solids]: Fire may produce irritating and/or toxic gases. Contact may cause burns to skin and eyes. Contact with molten substance may cause severe burns to skin and eyes. Runoff from fire control may cause pollution. 
Fire Hazard
Excerpt from ERG Guide 133 [Flammable Solids]: Flammable/combustible material. May be ignited by friction, heat, sparks or flames. Some may burn rapidly with flare-burning effect. Powders, dusts, shavings, borings, turnings or cuttings may explode or burn with explosive violence. Substance may be transported in a molten form at a temperature that may be above its flash point. May re-ignite after fire is extinguished. 
Combustible. Gives off irritating or toxic fumes (or gases) in a fire.
Fire Potential
Combustible.
Skin, Eye, and Respiratory Irritations
The substance irritates the eyes, the skin and the respiratory tract.
 
Safety and Hazard Properties
Chemical Dangers
Decomposes on heating and on burning. This produces toxic and corrosive fumes including hydrogen bromide and nitrogen oxides. Reacts with some metals, amines and alkaline compounds.
First Aid Measures
First Aid
EYES: First check the victim for contact lenses and remove if present. Flush victim`s eyes with water or normal saline solution for 20 to 30 minutes while simultaneously calling a hospital or poison control center. Do not put any ointments, oils, or medication in the victim`s eyes without specific instructions from a physician. IMMEDIATELY transport the victim after flushing eyes to a hospital even if no symptoms (such as redness or irritation) develop. SKIN: IMMEDIATELY flood affected skin with water while removing and isolating all contaminated clothing. Gently wash all affected skin areas thoroughly with soap and water. If symptoms such as redness or irritation develop, IMMEDIATELY call a physician and be prepared to transport the victim to a hospital for treatment. INHALATION: IMMEDIATELY leave the contaminated area; take deep breaths of fresh air. If symptoms (such as wheezing, coughing, shortness of breath, or burning in the mouth, throat, or chest) develop, call a physician and be prepared to transport the victim to a hospital. Provide proper respiratory protection to rescuers entering an unknown atmosphere. Whenever possible, Self-Contained Breathing Apparatus (SCBA) should be used; if not available, use a level of protection greater than or equal to that advised under Protective Clothing. INGESTION: DO NOT INDUCE VOMITING. If the victim is conscious and not convulsing, give 1 or 2 glasses of water to dilute the chemical and IMMEDIATELY call a hospital or poison control center. Be prepared to transport the victim to a hospital if advised by a physician. If the victim is convulsing or unconscious, do not give anything by mouth, ensure that the victim`s airway is open and lay the victim on his/her side with the head lower than the body. DO NOT INDUCE VOMITING. IMMEDIATELY transport the victim to a hospital.

Inhalation First Aid
Fresh air, rest.
Skin First Aid
Remove contaminated clothes. Rinse skin with plenty of water or shower.
Eye First Aid
First rinse with plenty of water for several minutes (remove contact lenses if easily possible), then refer for medical attention.
Ingestion First Aid
Rinse mouth. Induce vomiting (ONLY IN CONSCIOUS PERSONS!).
Fire Fighting Measures
Wear self contained breathing apparatus for fire fighting if necessary.
Use water spray to cool unopened containers.
Suitable extinguishing media: Use water spray, alcohol-resistant foam, dry chemical or carbon dioxide.
Powder, alcohol-resistant foam, water spray, carbon dioxide.
Fire Fighting
Excerpt from ERG Guide 133 [Flammable Solids]: SMALL FIRE: Dry chemical, CO2, sand, earth, water spray or regular foam. LARGE FIRE: Water spray, fog or regular foam. Move containers from fire area if you can do it without risk. Fire Involving Metal Pigments or Pastes (e.g. "Aluminum Paste") Aluminum Paste fires should be treated as a combustible metal fire. Use DRY sand, graphite powder, dry sodium chloride-based extinguishers, G-1® or Met-L-X® powder. Also, see ERG Guide 170. FIRE INVOLVING TANKS OR CAR/TRAILER LOADS: Cool containers with flooding quantities of water until well after fire is out. For massive fire, use unmanned hose holders or monitor nozzles; if this is impossible, withdraw from area and let fire burn. Withdraw immediately in case of rising sound from venting safety devices or discoloration of tank. ALWAYS stay away from tanks engulfed in fire. 
Use water spray, powder, alcohol-resistant foam, carbon dioxide.

  • Share !
E-NEWSLETTER